當前位置:首頁 » 語數英語 » 學習數學的

學習數學的

發布時間: 2021-08-09 21:44:12

㈠ 怎樣學習數學

方法,思考,不死記 (我認為我數學很好)

㈡ 有哪些學習數學的好方法

新知識的學習主要在課堂上進行,所以在學習課程中要重視課內的學習效率,尋求正確學習方法。不僅要做題,還要做好題。

1、提前做好准備,這就要求同學提前做好預習。

2、集中精力聽講,上課緊跟老師思路,抓住基礎知識和課堂重點。

3、要大膽發言,對問題要積極發言,鍛煉自己表達能力的機會,不僅能檢閱自己真正的水平,更能感受到成功的欣慰。

4、做好筆記;在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。



注意事項

古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備,但尚未出現極限的概念。

17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展。

數學古稱算學,中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

㈢ 學習數學的好點子

要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。

一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。

二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。

三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。

四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。

很多人在考試時總考不出自己的實際水平,拿不到理想的分數,究其原因,就是心理素質不過硬,考試時過於緊張的緣故,還有就是把考試的分數看得太重,所以才會導致考試失利,你要學會換一種方式來考慮問題,你要學會調整自己的心態,人們常說,考試考得三分是水平,七分是心理,過於地追求往往就會失去,就是這個緣故;不要把分數看得太重,即把考試當成一般的作業,理清自己的思路,認真對付每一道題,你就一定會考出好成績的;你要學會超越自我,這句話的意思就是,心裡不要總想著分數、總想著名次;只要我這次考試的成績比我上一次考試的成績有所提高,哪怕是只高一分,那我也是超越了自我;這也就是說,不與別人比成績,就與自己比,這樣你的心態就會平和許多,就會感到沒有那麼大的壓力,學習與考試時就會感到輕松自如的;你試著按照這種方式來調整自己,你就會發現,在不經意中,你的成績就會提高許多;

㈣ 學習數學的重要性是什麼

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

怎麼學習數學

1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授
的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化
思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯
想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互
用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成
「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新
精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問
題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看
書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
a.記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
b.拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
c.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤
原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
d.熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
e.經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
f.
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
g.
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
h.
學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

㈥ 學習數學的好處

1.數學是一切再教育的基礎,數學是培養邏輯思維重要渠道,不要只看眼前,往長的想,數學是所有學科的靈魂。
2.數學是一切科學的基礎,一切重大科技進展無不以數學息息相關。沒有了數學就沒有電腦、電視、太空梭,就沒有今天這么豐富多彩的生活。
3.數學是一種工具學科,是學習其他學科的基礎,同時還是提高人的判斷能力、分析能力、理解能力的學科。
4.數學不僅是一門科學,而且是一種普遍適用的技術。它是科學的大門和鑰匙,學數學是令自己變的理性的一個很重要的措施,數學本身也有自身的樂趣。
5.數學能讓你思考任何問題的時候都比較縝密,而不至於思緒紊亂。還能使你的腦子反映靈活,對突發事件的處理手段也更理性。
6.數學給予人們的不僅是知識,更重要的是能力,這種能力包括觀察實驗、收集信息、歸納類比、直覺判斷、邏輯推理、建立模型和精確計算。這些能力和培養,將使人終身受益。
7.經驗是數學的基礎,問題是數學的心臟,思考是數學的核心,發展是數學的目標,思想方法是數學的靈魂……數學思想方法是數學知識的精髓,是分析、解決數學問題的基本原則,也是數學素養的重要內涵,它是培養學生良好思維品質的催化劑。
8.數學與我們的生活有著密切的聯系,讓學生認識到現實生活中蘊涵著大量的數學信息,數學在現實生活中有著廣泛的應用,並從中體會到數學的價值,增進對數學的理解和應用數學的信心等。
9.或許讓學生體會到數學源於生活、用於生活的同時,更應該讓學生體會到數學高於生活,體會到數學可以帶動社會的發展,帶動生活質量的提高,這樣更能激發學生學好數學。
10.數學應用之廣泛,小至日常生活中柴米油鹽醬醋茶的買賣、利率、保險、醫療費用的計算,大至天文地理、環境生態、信息網路、質量控制、管理與預測、大型工程、農業經濟、國防科學、航天事業均大量存在著運用數學的蹤影。例如你可以用黃金分割的知識來審視一樣事物,看它美不美,又美在哪裡,是否符合黃金分割。又可以運用簡單的數學知識來分析你家一年的收入與支出,每年各增長多少,只要你想得出,生活中處處有數學。

㈦ 學習數學的方法

許多同學想學好數學,但感到難學,不知怎樣學好,到底數學學習有好的方法嗎?難道真的只有「聰明人」才能學好數學嗎?這里我談一些我的體會,供大家參考,希望能對你有所幫助。
我認為要學好數學,可以簡單說成---「理解加實踐」。對數學知識切記死記硬背,死板硬套。要全面理解其含義,最好能用自己的語言來正確的表述。具體的說,對概念的理解要求做到四會:會用語言正確的敘述,會判斷,會舉例,會應用。對法則、公式、定理和性質等的理解要求能准確的弄清條件、結論,掌握其推理的思路和方法,理解其推理的過程,能靈活的運用所得的結論。對例題的理解要能審清題意,自己先動手腦去解一解,然後再與書上的解答對比,通過反思,總結出解答這類問題的規律和方法。重在解題思路的發現和解題方法的總結。學習數學就是要培養我們的運算能力、思維能力、邏輯推理能力、分析問題和解決問題的能力,然而「能力」就是一種技能,不通過必要的訓練是無法形成的,美國的一位數學家說過:學習數學的唯一的方法就是「做數學」。所謂實踐就是要完成相當的練習,我們知道我國著名的數學家陳景潤對歌德巴赫猜想取得了突破性的成就,震驚了世界,可他用去的草稿紙就有幾麻袋!可見練習是多麼的重要。大家一定努力獨立完成課本上的練習,學有餘力的同學還應閱讀一些課外讀物,如《中學生數學》、《數學周報》等,這可拓寬我們的視野,提高我們的數學水平。另外有機會和條件的同學還要積極參加各種數學競賽,從中鍛煉和培養自己。在做練習的時候最好能做到一題多解,一題多變,並總結經驗,掌握技能,技巧,做到舉一反三,觸類旁通,發現「通法」,這通法是一生都有用的東西。
在學習過程之中還要克服以下一些問題,現在一些同學不會讀數學書,把書僅當作練習冊,老師講了就做作業,作業做完就了事。其實讀數學書是很重要的,一定要過閱讀關。讀數學書要做到「三讀」。即初讀、細讀、精讀。「初讀」就是平時的預習,上課前讀完全文,了解內容,對不懂得地方做好記號,以便在老師上課的時候特別注意。「細讀」就是在上課或課後詳細閱讀教材,不清楚的地方要反復讀,把所有的知識點弄懂。俗話說書讀百遍,其意自現,就是這個道理。與此同時,要同老師的講解對比,進行理解記憶。「精讀」就是在細讀的基礎上,對個別內容深入探究,大膽設想,拓寬思路,進行創造性閱讀,並可懷疑書上的結論。許多數學家就是由此一鳴驚人,走向成功之路的。比如年我國的著名數學家華羅庚先生就是否定高次方程的求根公式開始走向數學大師的。我們知道的用平行線等份線段的方法兩千多年來就只有書上介紹的唯一方法,可前兩年美國的一個中學生和他的老師發現了一種新的方法,他們因此而在美國和世界上都出了名。《解析幾何》之父笛卡爾說過「我們要敢於懷疑一切」。最後,還要克服心理上的障礙,不要認為自己天生不聰明,不是學數學的『料「。數學水平,數學能力的形成主要是後天努力的結果。對於一個智力並不出眾的人來說,非智力因素比智力因素更為重要。要有良好的學習習慣,堅強的毅力,持之以恆的探求精神,嚴謹的科學態度,百折不回的剛強意志,為國爭光的崇高品質。同學們,努力吧,原我國數學領先於世界的日子在你們手中早日實現!

㈧ 學習數學有什麼意義請問

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

㈨ 學習數學有什麼用

有這樣一個傳說,一次,數學家歐基里德教一個學生學習某個定理。結束後這個年輕人問歐基里德,他學了能得到什麼好處。歐基里德叫過一個奴隸,對他說:「給他3個奧波爾,他說他學了東西要得到好處。」在數學還非常哲學化的古希臘,探究世界的本原、萬物之道,而要得到什麼「好處」,受到鄙視是可以理解的。這就像另一個故事:在巴黎的一個酒吧里,一個姑娘問她的情人遲到的原因,那年輕人說他在趕做一道數學題,姑娘搖著腦袋,不解地問:「我真不明白,你花那麼多時間搞數學,數學到底有什麼用啊?」那年輕人長久地看著她,然後說:「寶貝兒,那麼愛情,到底有什麼用啊?」由經驗構成的分散的知識,顯然沒有成體系的知識可信,我們歷來都對知識的體系更有信任感。例如牛頓的力學體系,可以精確地計算物體的運動,即使推測1億年的日食也幾乎絲毫不差;達爾文以物種進化和自然選擇為核心的進化論,把整個生物世界統括為一個有序的、有機的系統,使得我們知道不同物種之間的關系。
但是,即使是經典的知識體系,也不足以始終承載我們的全部信任,因為新的經驗、新的研究會調整、更新舊的知識體系,新理論會替代舊理論。愛因斯坦相對論的出現,使得牛頓的力學體系成為一種更廣泛理論中的特例;基因學說的發展和化石證據的積累,使得達爾文進化論中漸變的思想受到挑戰,這樣的事例充滿了整個科學發展的歷史,讓我們不時用懷疑的眼光打量一下那些彷彿無懈可擊的知識體系,對它們心存警惕。
終極的確定數學追求什麼?我們稱古希臘的賢哲泰勒斯是古代數學第一人,是因為他不像埃及或巴比倫人那樣,對任意一個規則物體求數值解,他的雄心是揭示一個系列的真理。比如圓,他的答案不是關於一個特殊圓,而是任意圓,他對全世界所有的圓感興趣,他創造的理想的圓可以斷言:任何經過圓心的直線都將圓分割為兩等分,他找到的真理揭示了圓的性質。
數學要求普遍的確定性。
數學要劃清結果和證明的界限。
世界再變幻不定,我們也總要有所憑信,有所依託,把這種憑信的根據推到極致,我們能體會到數學的力量。數學之大用也在於此。
我們的先人很早就開始用數學來解決具體的工程問題,在這方面,各古文明都有上佳的表現,但是古希臘人對數學的理解更值得我們敬佩。首先是畢達哥拉斯學派,他們把數看作是構成世界的要素,世上萬物的關系都可以用數來解析,這絕不是我們現代「數字地球」之類的概念可以比擬的,那是一種世界觀,萬物最終可以歸結為數,由數學說明的東西可以成為神聖的信仰,我想,持這樣想法的人,一定對自然常存敬畏,不會專橫自欺的。
其次,古希臘人把數學用於辯論,他們要求數學提供關於政治、法律、哲學論點的論據,要求絕對可靠的證據,要求「不可駁斥性」;他們也不滿足於(例如埃及、巴比倫前輩那樣的)經驗性的證據,而是進一步要求證明,要求普遍的確定性。多麼可愛、嚴正的要求!有這樣要求的人,必定明達事理,光明磊落。
為了保證思想可靠,古希臘的思想家制定了思想的規則,在人類歷史上,思想第一次成為思想的對象,這些規則我們稱之為邏輯。比如不可同時承認正命題和反命題,換句話說,一個論點和它的反論點不能同時為真,即矛盾律;比如一正論點與反論點不可同時為假,即排中律。所有這些努力,都特別體現著人類對確定、可靠的知識的追求,一部數學史,就是人類不斷擴大確知領域的歷史。

熱點內容
嘉魚美術培訓 發布:2025-07-02 05:36:50 瀏覽:974
六年級班主任隨筆 發布:2025-07-02 04:38:58 瀏覽:324
中學英語網 發布:2025-07-02 03:14:56 瀏覽:977
教育的情懷 發布:2025-07-02 01:17:44 瀏覽:807
e推教學 發布:2025-07-01 20:16:22 瀏覽:492
故事數學題 發布:2025-07-01 19:00:18 瀏覽:952
教師基本情況登記表 發布:2025-07-01 17:05:51 瀏覽:241
英語輔導報社 發布:2025-07-01 16:38:23 瀏覽:143
高一語文綜合試卷 發布:2025-07-01 16:38:21 瀏覽:589
而且英語 發布:2025-07-01 14:58:57 瀏覽:936