當前位置:首頁 » 語數英語 » 考研數學三公式

考研數學三公式

發布時間: 2021-08-11 07:19:49

Ⅰ 誰有考研數學的公式發我一下

1、函數的有界性在定義域內有f(x)≥K1則函數f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數f(x)在定義域內有界的充分必要條件是在定義域內既有上界又有下界。
2、數列的極限定理(極限的唯一性)數列{xn}不能同時收斂於兩個不同的極限。
定理(收斂數列的有界性)如果數列{xn}收斂,那麼數列{xn}一定有界。
如果數列{xn}無界,那麼數列{xn}一定發散;但如果數列{xn}有界,卻不能斷定數列{xn}一定收斂,例如數列1,-1,1,-1,(-1)n+1…該數列有界但是發散,所以數列有界是數列收斂的必要條件而不是充分條件。
定理(收斂數列與其子數列的關系)如果數列{xn}收斂於a,那麼它的任一子數列也收斂於a.如果數列{xn}有兩個子數列收斂於不同的極限,那麼數列{xn}是發散的,如數列1,-1,1,-1,(-1)n+1…中子數列{x2k-1}收斂於1,{xnk}收斂於-1,{xn}卻是發散的;同時一個發散的數列的子數列也有可能是收斂的。
3、函數的極限函數極限的定義中0<|x-x0|表示x≠x0,所以x→x0時f(x)有沒有極限與f(x)在點x0有沒有定義無關。< p="">
定理(極限的局部保號性)如果lim(x→x0)時f(x)=A,而且A>0(或A<0),就存在著點那麼x0的某一去心鄰域,當x在該鄰域內時就有f(x)>0(或f(x)>0),反之也成立。
函數f(x)當x→x0時極限存在的充分必要條件是左極限右極限各自存在並且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。
一般的說,如果lim(x→∞)f(x)=c,則直線y=c是函數y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數y=f(x)圖形的鉛直漸近線。
4、極限運演算法則定理有限個無窮小之和也是無窮小;有界函數與無窮小的乘積是無窮小;常數與無窮小的乘積是無窮小;有限個無窮小的乘積也是無窮小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那麼a≥b.
5、極限存在准則兩個重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼准則如果數列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那麼limxn=a,對於函數該准則也成立。
單調有界數列必有極限。
6、函數的連續性設函數y=f(x)在點x0的某一鄰域內有定義,如果函數f(x)當x→x0時的極限存在,且等於它在點x0處的函數值f(x0),即lim(x→x0)f(x)=f(x0),那麼就稱函數f(x)在點x0處連續。
不連續情形:1、在點x=x0沒有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時則稱函數在x0處不連續或間斷。
如果x0是函數f(x)的間斷點,但左極限及右極限都存在,則稱x0為函數f(x)的第一類間斷點(左右極限相等者稱可去間斷點,不相等者稱為跳躍間斷點)。非第一類間斷點的任何間斷點都稱為第二類間斷點(無窮間斷點和震盪間斷點)。
定理有限個在某點連續的函數的和、積、商(分母不為0)是個在該點連續的函數。
定理如果函數f(x)在區間Ix上單調增加或減少且連續,那麼它的反函數x=f(y)在對應的區間Iy={y|y=f(x),x∈Ix}上單調增加或減少且連續。反三角函數在他們的定義域內都是連續的。
定理(最大值最小值定理)在閉區間上連續的函數在該區間上一定有最大值和最小值。如果函數在開區間內連續或函數在閉區間上有間斷點,那麼函數在該區間上就不一定有最大值和最小值。
定理(有界性定理)在閉區間上連續的函數一定在該區間上有界,即m≤f(x)≤M.定理(零點定理)設函數f(x)在閉區間[a,b]上連續,且f(a)與f(b)異號(即f(a)×f(b)<0),那麼在開區間(a,b)內至少有函數f(x)的一個零點,即至少有一點ξ(a<ξ< p="">
推論在閉區間上連續的函數必取得介於最大值M與最小值m之間的任何值。

Ⅱ 求考研數學必備公式

數學公式,是表徵自然界不同事物之數量之間的或等或不等的聯系,它確切的反映了事物內部和外部的關系,是我們從一種事物到達另一種事物的依據,使我們更好的理解事物的本質和內涵。
如一些基本公式
拋物線:y = ax* + bx + c
就是y等於ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x-h)* + k
就是y等於a乘以(x-h)的平方+k
h是頂點坐標的x
k是頂點坐標的y
一般用於求最大值與最小值
拋物線標准方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。
橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高
三角函數:
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 x1+x2=-b/a x1*x2=c/a 註:韋達定理
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 註: 其中 r 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosb 註:角b是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+dx+ey+f=0 註:d2+e2-4f>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 s=c*h 斜稜柱側面積 s=c'*h
正棱錐側面積 s=1/2c*h' 正稜台側面積 s=1/2(c+c')h'
圓台側面積 s=1/2(c+c')l=pi(r+r)l 球的表面積 s=4pi*r2
圓柱側面積 s=c*h=2pi*h 圓錐側面積 s=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 v=1/3*s*h 圓錐體體積公式 v=1/3*pi*r2h
斜稜柱體積 v=s'l 註:其中,s'是直截面面積, l是側棱長
柱體體積公式 v=s*h 圓柱體 v=pi*r2h
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半

Ⅲ 求:考研數學三 所有公式

這您得自己整理整理,多看一遍書好的
人家整理的還不一定是您要的

Ⅳ 考研數學三要求掌握高階導數那的萊布尼茨公式嗎如題

有的
高階導數和N階導數的求法(歸納法,分解法,用萊布尼茲法則)(用泰勒展開式求高階導)
例1-例7 習題2-3:5,6,7,11不用做,其餘全做,4,12重點做
參考書目:同濟大學數學系主編《高等數學》(上下冊)(第六版)

Ⅳ 誰有考研數學三公式大全,可以分享一份不

考研數學三公式大全,僅供參考:

Ⅵ 考研數學三考泰勒公式嗎

泰勒公式是要求了解的,以下附上數三一元函數微分學大綱內容以供參考:
一元函數微分學
考試內容
導數和微分的概念
導數的幾何意義和經濟意義
函數的可導性與連續性之間的關系
平面曲線的切線與法線
導數和微分的四則運算
基本初等函數的導數
復合函數、反函數和隱函數的微分法
高階導數
一階微分形式的不變性
微分中值定理
洛必達(L'Hospital)法則
函數單調性的判別
函數的極值
函數圖形的凹凸性、拐點及漸近線
函數圖形的描繪
函數的最大值與最小值
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(註:在區間 內,設函數 具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.
9.會描述簡單函數的圖形.

Ⅶ 急求考研數學三用到的公式。

已發送,請注意查收!
我只有這個,你看看行不行~~
希望對你有幫助~~考研加油!

熱點內容
師德師風建設自查自糾工作總結 發布:2025-06-28 17:28:01 瀏覽:653
高中生物必修一第一章測試題 發布:2025-06-28 14:51:29 瀏覽:842
掛面掛多久 發布:2025-06-28 14:30:40 瀏覽:417
湖川中學 發布:2025-06-28 14:08:24 瀏覽:556
韌帶撕裂多久能好 發布:2025-06-28 12:42:11 瀏覽:176
教師資格證一年可以考幾次 發布:2025-06-28 12:11:23 瀏覽:524
哈爾濱教師 發布:2025-06-28 12:09:55 瀏覽:407
四年級語文第四課 發布:2025-06-28 11:16:09 瀏覽:335
拋網教學視頻 發布:2025-06-28 11:00:23 瀏覽:168
如何做陽春面 發布:2025-06-28 09:50:55 瀏覽:5