當前位置:首頁 » 語數英語 » 數學分支圖

數學分支圖

發布時間: 2021-08-18 04:36:29

⑴ 現代數學分支樹形圖詳細

說得清楚就已經是大師了。
現代的數學不同於19世紀之前的時候了,沒有像Hilbert這樣能精通很多數學方向的人了,數學爆炸性發展,無數的分支,每個分支也是無數的,要精通一個小分支已經很厲害了。
如果你想多了解這方面的知識,可以先去看看數學的發展史,再去看一些牛人的評論

⑵ 離散數學 分支圖各個分支的總邊數為多少比如G<n, m>

對於一個無向圖而言,它的一個極大連通子圖即為一連通支。比如說,一個圖由三部分構成,其中每一部分都是連通的,但三個部分之間互相不連通,那麼每一部分即為無向圖的一個連通分支。此圖的連通分支數為3。
更形象些,你把教學樓附近的幾棵樹合起來看做是一個無向圖,樹葉和樹枝分叉點為圖的結點,樹枝為圖的邊,每一棵樹是連通的,但樹與樹之間沒有樹枝相連。因而,每棵樹都可視為一個連通分支,樹的個數為連通分枝數。

⑶ 數學的分支有哪些要正確,要全。

主要分基礎數學和應用數學,基礎數學偏重於理論,包括數論,代數,幾何,拓撲,函數,泛函分析,常(偏)微分方程,數學物理方程,概率論,組合數學(這些都是本科大學數學專業學習的課程,我就是數學專業的,學的都是純理論,沒啥用,說白了就是鍛煉你的邏輯思維能力);應用數學基本上都是到研究生才學的,分的較細,包括數理統計,運籌學,控制論,計算機的數學基礎,可以在企業裡面直接用

⑷ 數學有多少分支

數學有26個分支,分別是:

1、數學史

2、數理邏輯與數學基礎

3、數論

4、代數學

5、代數幾何學

6、幾何學

7、拓撲學

8、數學分析

9、非標准分析

10、函數論

11、常微分方程

12、偏微分方程

13、動力系統

14、積分方程

15、泛函分析

16、計算數學

17、概率論

18、數理統計學

19、應用統計數學

20、應用統計數學其他學科

21、運籌學

22、組合數學

23、模糊數學

24、量子數學

25、應用數學(具體應用入有關學科)

26、數學其他學科

(4)數學分支圖擴展閱讀:

數學各個領域

基礎與哲學

為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。數學邏輯專注於將數學置在一堅固的公理架構上,並研究此一架構的結果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。

現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性,千禧年大獎難題中的P/NP問題就是理論計算機科學中的著名問題。

離散數學

離散數學是指對理論計算機科學最有用處的數學領域之總稱,這包含有可計算理論、計算復雜性理論及資訊理論。可計算理論檢驗電腦的不同理論模型之極限,這包含現知最有力的模型-圖靈機。

復雜性理論研究可以由電腦做為較易處理的程度;有些問題即使理論是可以以電腦解出來,但卻因為會花費太多的時間或空間而使得其解答仍然不為實際上可行的,盡管電腦硬體的快速進步。

最後,資訊理論專注在可以儲存在特定媒介內的數據總量,且因此有壓縮及熵等概念。做為一相對較新的領域,離散數學有許多基本的未解問題。其中最有名的為P/NP問題-千禧年大獎難題之一。一般相信此問題的解答是否定的。

應用數學

應用數學思考將抽象的數學工具運用在解答科學、工商業及其他領域上之現實問題。應用數學中的一重要領域為統計學,它利用概率論為其工具並允許對含有機會成分的現象進行描述、分析與預測。

大部份的實驗、調查及觀察研究需要統計對其數據的分析。(許多的統計學家並不認為他們是數學家,而比較覺得是合作團體的一份子。)數值分析研究有什麼計算方法,可以有效地解決那些人力所限而算不出的數學問題;它亦包含了對計算中舍入誤差或其他來源的誤差之研究。

⑸ 數學各子學科關系圖示

數學分支
算術 初等代數 高等代數 數論 歐式幾何 非歐幾何 解析幾何 射影幾何 微分幾何 拓撲學 代數幾何 分形幾何 微積分學 復變函數論 實變函數論 泛函分析 常微分方程 偏微分方程 概率和數理統計 運籌學 數理邏輯 計算數學 模糊數學 突變理論 數學物理學

⑹ 求 大學數學體系、結構圖

你這張圖太雜,不同專業選學不同模塊。不過最先學的是高等數學(裡麵包版括微積分、解權析幾何初步和常微分方程基礎)、線性代數(這是代數中的一塊內容,主幹內容是解線性方程組,代數的研究范圍就更廣、更抽象了)、概率論和數理統計。
然後再學其他的,有了上述基礎,其他的就可以並列、交叉學了。
看你列舉出高等數學而不是數學分析,說明你不是數學專業的學生,那麼很多分支是你不用學的,先學好最基本的吧。另外,你說的「具體數學」是什麼東東?沒聽說過

⑺ 『現代全部數學分支』有哪些

希爾伯特的23個問題
希爾伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世紀上半葉德國乃至全世界最偉大的數學家之一。他在橫跨兩個世紀的六十年的研究生涯中,幾乎走遍了現代數學所有前沿陣地,從而把他的思想深深地滲透進了整個現代數學。希爾伯特是哥廷根數學學派的核心,他以其勤奮的工作和真誠的個人品質吸引了來自世界各地的年青學者,使哥廷根的傳統在世界產生影響。希爾伯特去世時,德國《自然》雜志發表過這樣的觀點:現在世界上難得有一位數學家的工作不是以某種途徑導源於希爾伯特的工作。他像是數學世界的亞歷山大,在整個數學版圖上,留下了他那顯赫的名字。 1900年,希爾伯特在巴黎數學家大會上提出了23個最重要的問題供二十世紀的數學家們去研究,這就是著名的"希爾伯特23個問題"。 1975年,在美國伊利諾斯大學召開的一次國際數學會議上,數學家們回顧了四分之三個世紀以來希爾伯特23個問題的研究進展情況。當時統計,約有一半問題已經解決了,其餘一半的大多數也都有重大進展。 1976年,在美國數學家評選的自1940年以來美國數學的十大成就中,有三項就是希爾伯特第1、第5、第10問題的解決。由此可見,能解決希爾伯特問題,是當代數學家的無上光榮。 下面摘錄的是1987年出版的《數學家小辭典》以及其它一些文獻中收集的希爾伯特23個問題及其解決情況: 1. 連續統假設 1874年,康托猜測在可列集基數和實數基數之間沒有別的基數,這就是著名的連續統假設。1938年,哥德爾證明了連續統假設和世界公認的策梅洛--弗倫克爾集合論公理系統的無矛盾性。1963年,美國數學家科亨證明連續假設和策梅洛--倫克爾集合論公理是彼此獨立的。因此,連續統假設不能在策梅洛--弗倫克爾公理體系內證明其正確性與否。希爾伯特第1問題在這個意義上已獲解決。 2. 算術公理的相容性 歐幾里得幾何的相容性可歸結為算術公理的相容性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明。1931年,哥德爾發表的不完備性定理否定了這種看法。1936年德國數學家根茨在使用超限歸納法的條件下證明了算術公理的相容性。 1988年出版的《中國大網路全書》數學卷指出,數學相容性問題尚未解決。 3. 兩個等底等高四面體的體積相等問題 問題的意思是,存在兩個等邊等高的四面體,它們不可分解為有限個小四面體,使這兩組四面體彼此全等。M.W.德恩1900年即對此問題給出了肯定解答。 4. 兩點間以直線為距離最短線問題 此問題提得過於一般。滿足此性質的幾何學很多,因而需增加某些限制條件。1973年,蘇聯數學家波格列洛夫宣布,在對稱距離情況下,問題獲得解決。 《中國大網路全書》說,在希爾伯特之後,在構造與探討各種特殊度量幾何方面有許多進展,但問題並未解決。 5.一個連續變換群的李氏概念,定義這個群的函數不假定是可微的 這個問題簡稱連續群的解析性,即:是否每一個局部歐氏群都有一定是李群?中間經馮·諾伊曼(1933,對緊群情形)、邦德里雅金(1939,對交換群情形)、謝瓦莢(1941,對可解群情形)的努力,1952年由格利森、蒙哥馬利、齊賓共同解決,得到了完全肯定的結果。 6.物理學的公理化 希爾伯特建議用數學的公理化方法推演出全部物理,首先是概率和力學。1933年,蘇聯數學家柯爾莫哥洛夫實現了將概率論公理化。後來在量子力學、量子場論方面取得了很大成功。但是物理學是否能全盤公理化,很多人表示懷疑。 7.某些數的無理性與超越性 1934年,A.O.蓋爾方德和T.施奈德各自獨立地解決了問題的後半部分,即對於任意代數數α≠0 ,1,和任意代數無理數β證明了αβ 的超越性。 8.素數問題 包括黎曼猜想、哥德巴赫猜想及孿生素數問題等。一般情況下的黎曼猜想仍待解決。哥德巴赫猜想的最佳結果屬於陳景潤(1966),但離最解決尚有距離。目前孿生素數問題的最佳結果也屬於陳景潤。 9.在任意數域中證明最一般的互反律 該問題已由日本數學家高木貞治(1921)和德國數學家E.阿廷(1927)解決。 10. 丟番圖方程的可解性 能求出一個整系數方程的整數根,稱為丟番圖方程可解。希爾伯特問,能否用一種由有限步構成的一般演算法判斷一個丟番圖方程的可解性?1970年,蘇聯的IO.B.馬季亞謝維奇證明了希爾伯特所期望的演算法不存在。 11. 系數為任意代數數的二次型 H.哈塞(1929)和C.L.西格爾(1936,1951)在這個問題上獲得重要結果。 12. 將阿貝爾域上的克羅克定理推廣到任意的代數有理域上去 這一問題只有一些零星的結果,離徹底解決還相差很遠。 13. 不可能用只有兩個變數的函數解一般的七次方程 七次方程 的根依賴於3個參數a、b、c,即x=x (a,b,c)。這個函數能否用二元函數表示出來?蘇聯數學家阿諾爾德解決了連續函數的情形(1957),維士斯金又把它推廣到了連續可微函數的情形(1964)。但如果要求是解析函數,則問題尚未解決。 14. 證明某類完備函數系的有限性 這和代數不變數問題有關。1958年,日本數學家永田雅宜給出了反例。 15. 舒伯特計數演算的嚴格基礎 一個典型問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學不密切聯系。但嚴格的基礎迄今仍未確立。 16. 代數曲線和代數曲線面的拓撲問題 這個問題分為兩部分。前半部分涉及代數曲線含有閉的分枝曲線的最大數目。後半部分要求討論 的極限環的最大個數和相對位置,其中X、Y是x、y的n次多項式.蘇聯的彼得羅夫斯基曾宣稱證明了n=2時極限環的個數不超過3,但這一結論是錯誤的,已由中國數學家舉出反例(1979)。 17. 半正定形式的平方和表示 一個實系數n元多項式對一切數組(x1,x2,...,xn) 都恆大於或等於0,是否都能寫成平方和的形式?1927年阿廷證明這是對的。 18. 用全等多面體構造空間 由德國數學家比勃馬赫(1910)、莢因哈特(1928)作出部分解決。 19. 正則變分問題的解是否一定解析 對這一問題的研究很少。C.H.伯恩斯坦和彼得羅夫斯基等得出了一些結果。 20. 一般邊值問題 這一問題進展十分迅速,已成為一個很大的數學分支。目前還在繼續研究。 21. 具有給定單值群的線性微分方程解的存在性證明 已由希爾伯特本人(1905)和H.羅爾(1957)的工作解決。 22. 由自守函數構成的解析函數的單值化 它涉及艱辛的黎曼曲面論,1907年P.克伯獲重要突破,其他方面尚未解決。 23. 變分法的進一步發展出 這並不是一個明確的數學問題,只是談了對變分法的一般看法。20世紀以來變分法有了很大的發展。 這23問題涉及現代數學大部分重要領域,推動了20世紀數學的發展。贊同12

⑻ 詳細的數學分支介紹

1.. 數學史
2.. 數理邏輯與數學基礎
a.. 演繹邏輯學 亦稱符號邏輯學
b.. 證明論 亦稱元數學
c.. 遞歸論
d.. 模型論
e.. 公理集合論
f.. 數學基礎
g.. 數理邏輯與數學基礎其他學科
3.. 數論
a.. 初等數論
b.. 解析數論
c.. 代數數論
d.. 超越數論
e.. 丟番圖逼近
f.. 數的幾何
g.. 概率數論
h.. 計算數論
i.. 數論其他學科
4.. 代數學
a.. 線性代數
b.. 群論
c.. 域論
d.. 李群
e.. 李代數
f.. Kac-Moody代數
g.. 環論 包括交換環與交換代數,結合環與結合代數,非結合環與非結
合代數等
h.. 模論
i.. 格論
j.. 泛代數理論
k.. 范疇論
l.. 同調代數
m.. 代數K理論
n.. 微分代數
o.. 代數編碼理論
p.. 代數學其他學科
5.. 代數幾何學
6.. 幾何學
a.. 幾何學基礎
b.. 歐氏幾何學
c.. 非歐幾何學 包括黎曼幾何學等
d.. 球面幾何學
e.. 向量和張量分析
f.. 仿射幾何學
g.. 射影幾何學
h.. 微分幾何學
i.. 分數維幾何
j.. 計算幾何學
k.. 幾何學其他學科
7.. 拓撲學
a.. 點集拓撲學
b.. 代數拓撲學
c.. 同倫論
d.. 低維拓撲學
e.. 同調論
f.. 維數論
g.. 格上拓撲學
h.. 纖維叢論
i.. 幾何拓撲學
j.. 奇點理論
k.. 微分拓撲學
l.. 拓撲學其他學科
8.. 數學分析
a.. 微分學
b.. 積分學
c.. 級數論
d.. 數學分析其他學科
9.. 非標准分析
10.. 函數論
a.. 實變函數論
b.. 單復變函數論
c.. 多復變函數論
d.. 函數逼近論
e.. 調和分析
f.. 復流形
g.. 特殊函數論
h.. 函數論其他學科
11.. 常微分方程
a.. 定性理論
b.. 穩定性理論
c.. 解析理論
d.. 常微分方程其他學科
12.. 偏微分方程
a.. 橢圓型偏微分方程
b.. 雙曲型偏微分方程
c.. 拋物型偏微分方程
d.. 非線性偏微分方程
e.. 偏微分方程其他學科
13.. 動力系統
a.. 微分動力系統
b.. 拓撲動力系統
c.. 復動力系統
d.. 動力系統其他學科
14.. 積分方程
15.. 泛函分析
a.. 線性運算元理論
b.. 變分法
c.. 拓撲線性空間
d.. 希爾伯特空間
e.. 函數空間
f.. 巴拿赫空間
g.. 運算元代數
h.. 測度與積分
i.. 廣義函數論
j.. 非線性泛函分析
k.. 泛函分析其他學科
16.. 計算數學
a.. 插值法與逼近論
b.. 常微分方程數值解
c.. 偏微分方程數值解
d.. 積分方程數值解
e.. 數值代數
f.. 連續問題離散化方法
g.. 隨機數值實驗
h.. 誤差分析
i.. 計算數學其他學科
17.. 概率論
a.. 幾何概率
b.. 概率分布
c.. 極限理論
d.. 隨機過程 包括正態過程與平穩過程、點過程等
e.. 馬爾可夫過程
f.. 隨機分析
g.. 鞅論
h.. 應用概率論 具體應用入有關學科
i.. 概率論其他學科
18.. 數理統計學
a.. 抽樣理論 包括抽樣分布、抽樣調查等
b.. 假設檢驗
c.. 非參數統計
d.. 方差分析
e.. 相關回歸分析
f.. 統計推斷
g.. 貝葉斯統計 包括參數估計等
h.. 試驗設計
i.. 多元分析
j.. 統計判決理論
k.. 時間序列分析
l.. 數理統計學其他學科
19.. 應用統計數學
a.. 統計質量控制
b.. 可靠性數學
c.. 保險數學
d.. 統計模擬
20.. 應用統計數學其他學科
21.. 運籌學
a.. 線性規劃
b.. 非線性規劃
c.. 動態規劃
d.. 組合最優化
e.. 參數規劃
f.. 整數規劃
g.. 隨機規劃
h.. 排隊論
i.. 對策論 亦稱博弈論
j.. 庫存論
k.. 決策論
l.. 搜索論
m.. 圖論
n.. 統籌論
o.. 最優化
p.. 運籌學其他學科
22.. 組合數學
23.. 模糊數學
24.. 應用數學 具體應用入有關學科
25.. 數學其他學科

⑼ 數學樹狀圖怎麼

01
顯性放回
現有形狀、大小和顏色完全一樣的三張卡片,上面分別標有數字「1」、「2」、「3」.第一次從這三張卡片中隨機抽取一張,記下數字後放回;第二次再從這三張卡片中隨機抽取一張並記下數字.請用畫樹狀圖的方法表示出上述試驗所有可能的結果,並求第二次抽取的數字大於第一次抽取的數字的概率.



02
分析:
從題中文字「記下數字後放回」知本題屬於「顯性放回」.本題中的事件是摸兩次卡片,看卡片的數字,由此可以確定事件包括兩個環節.摸第一張卡片,放回去,再摸第二張卡片,所以樹狀圖應該畫兩層.
第一張卡片的數字可能是1,2,3等3個中的一個,所以第一層應畫3個分叉;
第二次摸取卡片,由於放回,第二個球的數字可能是3個中的一個,所以第二層應接在第一層的3個分叉上,每個小分支上,再有3個分叉.
畫出樹狀圖,這樣共得到3×3=9種情況,從中找出第二次抽取的數字大於第一次抽取的數字的情況,再求出概率.

03
顯性不放回
例2 一個不透明的布袋裡裝有4個大小、質地都相同的乒乓球,球面上分別標有數字1,-2,3,-4.小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有幾種可能的結果;
(2)請用畫樹狀圖的方法求兩次摸出的乒乓球的數字之積為偶數的概率.



04
分析:
本題屬於「顯性不放回」.本題中的事件是摸兩個乒乓球,看乒乓球的數字,由此可以確定事件包括兩個環節,所以樹狀圖應該畫兩層.第一個乒乓球的數字可能是1,-2,3,-4等4個中的一個,所以第一層應畫4個分叉;由於不放回,第二個乒乓球的數字可能是剩下的3個中的一個,所以第二層應接在第一層的4個分叉上,每個小分支上,再有3個分叉,畫出樹狀圖.

05
隱形放回
小明騎自行車從家去學校,途經裝有紅、綠燈的三個路口,假沒他在每個路口遇到紅燈和綠燈的概率均為,則小明經過這三個路口時,恰有一次遇到紅燈的慨率是多少?請用畫樹狀圖的方法加以說明.



06
分析:
通過反復分析知本題屬於「隱形放回」問題,比較容易出錯.其實問題相當於一個口袋裡有紅球和綠球各1個,放回地隨機取三次.本題中的事件是小明騎自行車從家去學校,途經裝有紅、綠燈的三個路口,由此可以確定事件包括三個環節,所以樹狀圖應該畫三層.由於每一個路口可能是紅燈,綠燈等2個中的一個,所以每一層的分叉的小分支上都有兩個小分叉.

07
隱形不放回
小明有3支水筆,分別為紅色、藍色、黑色;有2塊橡皮,分別為白色、灰色.小明從中任意取出1支水筆和1塊橡皮配套使用,試用樹狀圖或表格列出所有可能的結果,並求取出紅色水筆和白色橡皮配套的概率.



08
分析:
從文字中稍加分析知,本題屬於「隱性不放回」,而且選取時有指明對象,是水筆和橡皮.本題中的事件是小明有3支水筆為紅色、藍色、黑色;有2塊橡皮為白色、灰色,取出1支水筆和1塊橡皮配套使用.由此可以確定事件包括兩個環節,所以樹狀圖應該畫兩層.至於水筆和橡皮哪個先取,可以隨便,不影響結果,關鍵是各層的分叉要畫對.

09
有兩個不同形狀的計算器(分別記為A,B)和與之匹配的保護蓋(分別記為a,6)(如圖所示)散亂地放在桌子上,若從計算器和保護蓋中隨機取兩個,用樹形圖法或列表法,求恰好匹配的概率.





10
分析:
從文字中理解本題屬於「隱性不放回」,而且隨機選取沒有指明對象是計算器還是保護蓋,比較容易出錯,本題中的事件是從計算器和保護蓋中隨機取兩個,看恰好匹配.由此可以確定事件包括兩個環節,取第一個,不放回去,然後再取第二個,所以樹狀圖應該畫兩層.取第一個可能是A,B,a,b等4個中的一個,所以第一層應畫4個分叉;再看第二層,由於不放回,取第二個可能是剩下的3個中的一個,所以第二層應接在第一層的4個分叉上,每個小分支上,再有3個分叉,畫出樹狀圖.

⑽ 數學分支有哪些

數學分支有:
1.. 數學史
2.. 數理邏輯與數學基礎
a.. 演繹邏輯學 亦稱符號邏輯學
b.. 證明論 亦稱元數學
c.. 遞歸論
d.. 模型論
e.. 公理集合論
f.. 數學基礎
g.. 數理邏輯與數學基礎其他學科
3.. 數論
a.. 初等數論
b.. 解析數論
c.. 代數數論
d.. 超越數論
e.. 丟番圖逼近
f.. 數的幾何
g.. 概率數論
h.. 計算數論
i.. 數論其他學科
4.. 代數學
a.. 線性代數
b.. 群論
c.. 域論
d.. 李群
e.. 李代數
f.. Kac-Moody代數
g.. 環論 包括交換環與交換代數,結合環與結合代數,非結合環與非結
合代數等
h.. 模論
i.. 格論
j.. 泛代數理論
k.. 范疇論
l.. 同調代數
m.. 代數K理論
n.. 微分代數
o.. 代數編碼理論
p.. 代數學其他學科
5.. 代數幾何學
6.. 幾何學
a.. 幾何學基礎
b.. 歐氏幾何學
c.. 非歐幾何學 包括黎曼幾何學等
d.. 球面幾何學
e.. 向量和張量分析
f.. 仿射幾何學
g.. 射影幾何學
h.. 微分幾何學
i.. 分數維幾何
j.. 計算幾何學
k.. 幾何學其他學科
7.. 拓撲學
a.. 點集拓撲學
b.. 代數拓撲學
c.. 同倫論
d.. 低維拓撲學
e.. 同調論
f.. 維數論
g.. 格上拓撲學
h.. 纖維叢論
i.. 幾何拓撲學
j.. 奇點理論
k.. 微分拓撲學
l.. 拓撲學其他學科
8.. 數學分析
a.. 微分學
b.. 積分學
c.. 級數論
d.. 數學分析其他學科
9.. 非標准分析
10.. 函數論
a.. 實變函數論
b.. 單復變函數論
c.. 多復變函數論
d.. 函數逼近論
e.. 調和分析
f.. 復流形
g.. 特殊函數論
h.. 函數論其他學科
11.. 常微分方程
a.. 定性理論
b.. 穩定性理論
c.. 解析理論
d.. 常微分方程其他學科
12.. 偏微分方程
a.. 橢圓型偏微分方程
b.. 雙曲型偏微分方程
c.. 拋物型偏微分方程
d.. 非線性偏微分方程
e.. 偏微分方程其他學科
13.. 動力系統
a.. 微分動力系統
b.. 拓撲動力系統
c.. 復動力系統
d.. 動力系統其他學科
14.. 積分方程
15.. 泛函分析
a.. 線性運算元理論
b.. 變分法
c.. 拓撲線性空間
d.. 希爾伯特空間
e.. 函數空間
f.. 巴拿赫空間
g.. 運算元代數
h.. 測度與積分
i.. 廣義函數論
j.. 非線性泛函分析
k.. 泛函分析其他學科
16.. 計算數學
a.. 插值法與逼近論
b.. 常微分方程數值解
c.. 偏微分方程數值解
d.. 積分方程數值解
e.. 數值代數
f.. 連續問題離散化方法
g.. 隨機數值實驗
h.. 誤差分析
i.. 計算數學其他學科
17.. 概率論
a.. 幾何概率
b.. 概率分布
c.. 極限理論
d.. 隨機過程 包括正態過程與平穩過程、點過程等
e.. 馬爾可夫過程
f.. 隨機分析
g.. 鞅論
h.. 應用概率論 具體應用入有關學科
i.. 概率論其他學科
18.. 數理統計學
a.. 抽樣理論 包括抽樣分布、抽樣調查等
b.. 假設檢驗
c.. 非參數統計
d.. 方差分析
e.. 相關回歸分析
f.. 統計推斷
g.. 貝葉斯統計 包括參數估計等
h.. 試驗設計
i.. 多元分析
j.. 統計判決理論
k.. 時間序列分析
l.. 數理統計學其他學科
19.. 應用統計數學
a.. 統計質量控制
b.. 可靠性數學
c.. 保險數學
d.. 統計模擬
20.. 應用統計數學其他學科
21.. 運籌學
a.. 線性規劃
b.. 非線性規劃
c.. 動態規劃
d.. 組合最優化
e.. 參數規劃
f.. 整數規劃
g.. 隨機規劃
h.. 排隊論
i.. 對策論 亦稱博弈論
j.. 庫存論
k.. 決策論
l.. 搜索論
m.. 圖論
n.. 統籌論
o.. 最優化
p.. 運籌學其他學科
22.. 組合數學
23.. 模糊數學
24.. 應用數學 具體應用入有關學科
25.. 數學其他學科

熱點內容
化學式hf 發布:2025-05-23 03:35:36 瀏覽:858
零基礎學b超視頻教學 發布:2025-05-23 02:08:22 瀏覽:876
高一歷史期末試題 發布:2025-05-22 23:46:40 瀏覽:782
學美術賺錢 發布:2025-05-22 22:37:49 瀏覽:740
n97多少錢 發布:2025-05-22 20:56:55 瀏覽:451
大學數學的題 發布:2025-05-22 20:37:43 瀏覽:333
金聰老師 發布:2025-05-22 19:44:09 瀏覽:902
曹冰老師 發布:2025-05-22 19:03:11 瀏覽:143
上海五年級數學試卷 發布:2025-05-22 18:44:58 瀏覽:493
生物質鍋爐廠 發布:2025-05-22 15:57:39 瀏覽:807