當前位置:首頁 » 語數英語 » 九年級數學資料

九年級數學資料

發布時間: 2021-08-29 08:20:53

1. 九年級數學知識總結

初中數學總復習提綱

1、一元一次方程根的情況
△=b2-4ac
當△>0時,一元二次方程有2個不相等的實數根;
當△=0時,一元二次方程有2個相同的實數根;
當△<0時,一元二次方程沒有實數根
2、平行四邊形的性質:
兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
菱形:①一組鄰邊相等的平行四邊形是菱形
②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
有一個內角是直角的平行四邊形叫做矩形。
矩形的對角線相等,四個角都是直角。
對角線相等的平行四邊形是矩形。
正方形具有平行四邊形,矩形,菱形的一切性質。
⑤一組鄰邊相等的矩形是正方形。
多邊形:
①N邊形的內角和等於(N-2)180度
②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)

平均數:對於N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X
加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d﹤r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d﹥r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d﹥R+r
②兩圓外切 d=R+r
③兩圓相交 R-r﹤d﹤R+r(R﹥r)
④兩圓內切 d=R-r(R﹥r)
⑤兩圓內含 d﹤R-r(R﹥r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

三、常用數學公式
公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
初中幾何常見輔助線作法歌訣匯編
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。基本作圖很關鍵,平時掌握要熟練

2. 初三數學好的資料

初三數學知識點
第一章

1
:形如 ( )的式子為

性質: ( )是一個



2 二次
的乘除: ;

3 二次
的加減:二次
加減時,先將二次根式華為最簡二次根式,再將
相同的二次根式進行合並。
4 海倫-
公式: ,S是三角形的面積,p為 。
第二章

1
:等號兩邊都是
,且只有一個未知數,未知數的最高次是2的方程。
2
的解法

:將方程的一邊配成
,然後兩邊開方;



:左邊是兩個因式的乘積,右邊為零。
3 一元
在實際問題中的應用
4
:設 是方程 的兩個根,那麼有

第三章 旋轉
1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換
性質:對應點到旋轉中
相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角
旋轉前後的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;

:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是

3 關於
的點的坐標
第四章 圓
1 圓、圓心、半徑、直徑、
、弦、半圓的定義
2 垂直於弦的直徑
圓是
,任何一條直徑所在的直線都是它的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;

平分弦的直徑垂直弦,並且平分弦所對的兩條弧。
3 弧、弦、

在同圓或等圓中,相等的
所對的弧相等,所對的弦也相等。
4

在同圓或等圓中,同弧或等弧所對的
相等,都等於這條弧所對的
的一半;
半圓(或直徑)所對的
是直角,90度的圓
所對的弦是直徑。
5 點和圓的位置關系
點在圓外
點在圓上 d=r
點在圓內 d<r
定理:不在同一條直線上的三個點確定一個圓。
三角形的
:經過三角形的三個頂點的圓,
的圓心是三角形的三條邊的
的交點,叫做三角形的

6直線和圓的位置關系
相交 d<r
相切 d=r
相離 d>r
切線的性質定理:圓的切線垂直於過切點的半徑;
切線的判定定理:經過圓的外端並且垂直於這條半徑的直線是圓的切線;

:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。

:和三角形各邊都相切的圓為它的
,圓心是三角形的三條
的交點,為三角形的內心。
7 圓和圓的位置關系
外離 d>R+r
外切 d=R+r
相交 R-r<d<R+r
內切 d=R-r
內含 d<R-r
8
和圓

的中心:
的圓心

的半徑:外接圓的半徑

的中心角:沒邊所對的圓心角

的邊心距:中心到一邊的距離
9 弧長和

弧長


10 圓錐的側面積和全面積
側面積:
全面積
11 (附加)


第五章 概率初步
1 概率意義:在大量重復試驗中,事件A發生的頻率 穩定在某個常數p附近,則常數p叫做事

件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
3 用頻率去估計概率
下冊
第六章

1
=
a>0,開口向上;a<0,開口向下;
對稱軸: ;

: ;
圖像的平移可以參照頂點的平移。
2 用函數觀點看一元

3
與實際問題
第七章 相似
1 圖形的相似
相似
的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那麼這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2

判定:
平行於三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那麼這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,並且相應的夾角相等,那麼兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼兩個三角形相似。
3
的周長和面積

(多邊形)的周長的比等於相似比;
相似三角形(多邊形)的面積的比等於相似比的平方。
4 位似

:兩個多邊形相似,而且對應頂點的連線相交於一點,對應邊互相平行,這樣的兩個圖形叫
,相交的點叫位似中心。
第八章

1
:正弦、餘弦、

2

投影和視圖
1 投影:平行投影、中心投影、

2
:俯視圖、


3
的畫法

3. 初三數學中考資料

初中數學總復習提綱

第一章 實數
★重點★ 實數的有關概念及性質,實數的運算
☆內容提要☆
一、 重要概念
1.數的分類及概念
數系表:

說明:「分類」的原則:1)相稱(不重、不漏)
2)有標准
2.非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
3.倒數: ①定義及表示法
②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1時1/a>1;a>1時,1/a<1;D.積為1。
4.相反數: ①定義及表示法
②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:①定義(「三要素」)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數—自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:①定義(兩種):
代數定義:

幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號「││」是「非負數」的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有「││」出現,其關鍵一步是去掉「││」符號。
二、 實數的運算
1. 運演算法則(加、減、乘、除、乘方、開方)
2. 運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3. 運算順序:A.高級運算到低級運算;B.(同級運算)從「左」
到「右」(如5÷ ×5);C.(有括弧時)由「小」到「中」到「大」。
三、 應用舉例(略)
附:典型例題
1. 已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

第二章 代數式
★重點★代數式的有關概念及性質,代數式的運算
☆內容提要☆
一、 重要概念
分類:

1.代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨
的一個數或字母也是代數式。
整式和分式統稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算並且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個數或字母)
幾個單項式的和,叫做多項式。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,
=x, =│x│等。
4.系數與指數
區別與聯系:①從位置上看;②從表示的意義上看
5.同類項及其合並
條件:①字母相同;②相同字母的指數相同
合並依據:乘法分配律
6.根式
表示方根的代數式叫做根式。
含有關於字母開方運算的代數式叫做無理式。
注意:①從外形上判斷;②區別: 、 是根式,但不是無理式(是無理數)。
7.算術平方根
⑴正數a的正的平方根( [a≥0—與「平方根」的區別]);
⑵算術平方根與絕對值
① 聯系:都是非負數, =│a│
②區別:│a│中,a為一切實數; 中,a為非負數。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。
滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。
9.指數
⑴ ( —冪,乘方運算)

① a>0時, >0;②a<0時, >0(n是偶數), <0(n是奇數)
⑵零指數: =1(a≠0)
負整指數: =1/ (a≠0,p是正整數)
二、 運算定律、性質、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質
⑴基本性質: = (m≠0)
⑵符號法則:
⑶繁分式:①定義;②化簡方法(兩種)
3.整式運演算法則(去括弧、添括弧法則)
4.冪的運算性質:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術根的性質: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .
11.科學記數法: (1≤a<10,n是整數=
三、 應用舉例(略)
四、 數式綜合運算(略)

第三章 統計初步
★重點★
☆ 內容提要☆
一、 重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)
二、 計算方法
1.樣本平均數:⑴ ;⑵若 , ,…, ,則 (a—常數, , ,…, 接近較整的常數a);⑶加權平均數: ;⑷平均數是刻劃數據的集中趨勢(集中位置)的特徵數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越准確。
2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、 的平均數的較「整」的常數);若 、 、…、 較「小」較「整」,則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特徵數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標准差:
三、 應用舉例(略)

第四章 直線形
★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。
☆ 內容提要☆
一、 直線、相交線、平行線
1.線段、射線、直線三者的區別與聯系
從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為餘角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區別與聯系)
11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、 三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內、外角)
2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②××線的交點—三角形的×心③性質
① 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質:等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法—反證法:①反設②歸謬③結論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關系:加倍法、折半法
⑸證線段和差關系:延結法、截余法
⑹證面積關系:將面積表示出來
三、 四邊形
分類表:
1.一般性質(角)
⑴內角和:360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360°
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。
6.作圖:任意等分線段。
四、 應用舉例(略)
第五章 方程(組)
★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)
☆ 內容提要☆
一、 基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2. 分類:

二、 解方程的依據—等式性質
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括弧→移項→合並同類項→
系數化成1→解。
2. 元一次方程組的解法:⑴基本思想:「消元」⑵方法:①代入法
②加減法
四、 一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特徵)
⑵配方法(注意步驟—推倒求根公式)
⑶公式法:
⑷因式分解法(特徵:左邊=0)
3.根的判別式:
4.根與系數頂的關系:
逆定理:若 ,則以 為根的一元二次方程是: 。
5.常用等式:

五、 可化為一元二次方程的方程
1.分式方程
⑴定義
⑵基本思想:

⑶基本解法:①去分母法②換元法(如, )
⑷驗根及方法
2.無理方程
⑴定義
⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗根及方法
3.簡單的二元二次方程組
由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。
六、 列方程(組)解應用題
一概述
列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。
⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。
⑶用含未知數的代數式表示相關的量。
⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。
⑸解方程及檢驗。
⑹答案。
綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解應用題的關鍵。
二常用的相等關系
1. 行程問題(勻速運動)
基本關系:s=vt
⑴相遇問題(同時出發):

+ = ;
⑵追及問題(同時出發):

若甲出發t小時後,乙才出發,而後在B處追上甲,則

⑶水中航行: ;
2. 配料問題:溶質=溶液×濃度
溶液=溶質+溶劑
3.增長率問題:
4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位「1」)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。
三注意語言與解析式的互化
如,「多」、「少」、「增加了」、「增加為(到)」、「同時」、「擴大為(到)」、「擴大了」、……
又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。
四注意從語言敘述中寫出相等關系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,「小時」「分鍾」的換算;s、v、t單位的一致等。
七、應用舉例(略)
第六章 一元一次不等式(組)
★重點★一元一次不等式的性質、解法
☆ 內容提要☆
1. 定義:a>b、a<b、a≥b、a≤b、a≠b。
2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3. 一元一次不等式組:
4. 不等式的性質:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac<bc(c<0)
⑷(傳遞性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)
7.應用舉例(略)
第七章 相似形
★重點★相似三角形的判定和性質
☆內容提要☆
一、本章的兩套定理
第一套(比例的有關性質):
涉及概念:①第四比例項②比例中項③比的前項、後項,比的內項、外項④黃金分割等。
第二套:
注意:①定理中「對應」二字的含義;
②平行→相似(比例線段)→平行。
二、相似三角形性質
1.對應線段…;2.對應周長…;3.對應面積…。
三、相關作圖
①作第四比例項;②作比例中項。
四、證(解)題規律、輔助線
1.「等積」變「比例」,「比例」找「相似」。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴


3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將「一份」看著k;對於等比問題,常用處理辦法是設「公比」為k。
5.對於復雜的幾何圖形,採用將部分需要的圖形(或基本圖形)「抽」出來的辦法處理。
五、 應用舉例(略)
第八章 函數及其圖象
★重點★正、反比例函數,一次、二次函數的圖象和性質。
☆ 內容提要☆
一、平面直角坐標系
1.各象限內點的坐標的特點
2.坐標軸上點的坐標的特點
3.關於坐標軸、原點對稱的點的坐標的特點
4.坐標平面內點與有序實數對的對應關系
二、函數
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變數取值范圍的原則:⑴使代數式有意義;⑵使實際問題有
意義。
3.畫函數圖象:⑴列表;⑵描點;⑶連線。
三、幾種特殊函數
(定義→圖象→性質)
1. 正比例函數
⑴定義:y=kx(k≠0) 或y/x=k。
⑵圖象:直線(過原點)
⑶性質:①k>0,…②k<0,…
2. 一次函數
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質:①k>0,…②k<0,…
⑷圖象的四種情況:
3. 二次函數
⑴定義:

特殊地, 都是二次函數。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變為 ,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質:a>0時,在對稱軸左側…,右側…;a<0時,在對稱軸左側…,右側…。
4.反比例函數
⑴定義: 或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)—用描點法畫出。
⑶性質:①k>0時,圖象位於…,y隨x…;②k<0時,圖象位於…,y隨x…;③兩支曲線無限接近於坐標軸但永遠不能到達坐標軸。
四、重要解題方法
1. 用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,並應充分運用拋物線關於對稱軸對稱的特點,尋找新的點的坐標。如下圖:
2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。
六、應用舉例(略)

第九章 解直角三角形
★重點★解直角三角形
☆ 內容提要☆
一、三角函數
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函數值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3. 互余兩角的三角函數關系:sin(90°-α)=cosα;…
4. 三角函數值隨角度變化的關系
5.查三角函數表
二、解直角三角形
1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2. 依據:①邊的關系:
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
三、對實際問題的處理
1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
四、應用舉例(略)
第十章 圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆ 內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.「三點定圓」定理
4.垂徑定理及其推論
5.「等對等」定理及其推論
5. 與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:

2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)

2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:
內角的一半: (右圖)
(解Rt△OAM可求出相關元素, 、 等)
六、 一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、 點的軌跡
六條基本軌跡
八、 有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、 基本圖形
十、 重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦

4. 初三數學有些什麼內容

義務教育課程標准實驗教科書·數學九年級上冊
第二十一章二次根式回
第二十二章一元二次答方程
第二十三章旋轉
第二十四章圓
第二十五章概率初步
義務教育課程標准實驗教科書·數學九年級下冊
第二十六章二次函數
第二七章相似
第二十八章銳角三角函數
第二十九章投影與視圖

5. 九年級上冊數學資料買什麼

個人建議全品學練考、5年中考3年模擬、《典中點》、龍門卷、黃岡卷等等裡面有蠻多壓軸題的,新版的教材完全解讀也可以。總之跟著王後雄曲一線那些預測命題趨向很穩的,世紀金榜、三年中考兩年模擬這些題目量也夠 可以多練

6. 初三數學內容有哪些

初三數學學的基本內容分別是「圖形與幾何」,「函數與分析」,「數據處理與概率統計」。

1、圖形與幾何系列內容

以研究圖形性質為載體,形成初等幾何的基礎。體現經驗幾何是起點,注重直觀感知;實驗幾何是基礎,注重合情推理如類比、歸納以及操作說理;論證幾何是重點,注重演繹推理。

2、函數與分析系列內容

以形成函數概念和直觀研究簡單初等函數為基本任務,進行數學分析的奠基。在一次函數、二次函數和反比例函數等基本函數研究中,展示初等的分析方法。

3、數據處理與概率統計系列內容

以體驗概率與統計的基本思想方法為重點,引進概率與統計的初步知識。完善數據處理的基本方法,建立初步的概率與統計知識基礎;解釋和解決現實生活中一些簡單的概率統計問題。

(6)九年級數學資料擴展閱讀:

數學概念是初中數學的基石,是數學的思維模式和方法載體。很多學生遇到的數學解題困難,追溯根源,往往發現是由於他們在某個數學概念處產生了問題,致使解題受阻。

概念屬於理性認識,它的形成依賴於感性認識,學生的心理特點是容易理解和接受具體的感性認識。數學概念學習方法:在學習中要了解概念的發生與形成過程中,弄清概念之間的區別與聯系,在頭腦中形成相關概念的網路,以達到掌握並靈活運用的程度。

學習數學新概念前,如果能讓學生認知結構中原有的適當概念作一些結構上的變化來引進新概念,則有利於促進新概念的形成。對有些概念的教學,可以從實際出發,讓孩子在操作中去發現概念的發生和發展過程

7. 人教版九年級數學寫什麼資料比較好要稍微難一點的,謝謝。新觀察就免了。

中考必備:各地2015年中考題匯編

8. 九年級數學復習資料

九年級數學期中復習提綱
反比例函數
一、復習目標:
(1)鞏固反比例函數的概念,會求反比例函數表達式並能畫出圖象.
(2)鞏固反比例函數圖象的變化其及性質並能運用解決某些實際問題.
(3)善於用適當的函數表示法刻畫某些實際問題中變數之間的關系,並結合函數圖象分析簡單的數量關系。
(4)學習並熟悉數形結合的方法對解決實際問題有重要的作用,用待定系數法求函數解析式是一種常用的方法。
二、知識梳理
表達式 y=kx (k≠0)

圖 象 k>0 k<0

性 質
1.圖象在第一、三象限;
2.每個象限內,函數y的值隨x的增大而減小. 1.圖象在第二、四象限;
2.在每個象限內,函數y值隨x的增大而增大.
在一個反比例函數圖象上任取兩點P,Q,過點P,Q分別作x、軸,y軸的平行線,與坐標軸圍成的矩形面積為S1,S2則S1=S2 =|k|
反比例函數既是軸對稱圖形,又是中心對稱圖形。

二次函數
一、 復習目標:
(1) 認識二次函數是常見的簡單函數之一,也是刻畫現實世界變數之間關系的重要數學模型.
(2) 理解二次函數的概念,掌握其函數關系式以及自變數的取值范圍.
(3)能正確地描述二次函數的圖象,能根據圖象或函數關系式說出二次函數圖象的特徵及函數的性質,並能運用這些性質解決問題.
(4)能根據問題中的條件確定二次函數的關系式,並運用二次函數及其性質解決簡單的實際問題.
(5)了解二次函數與一元二次方程的關系,能利用二次函數的圖象求一元二次方程的近似解.
二、知識梳理
1、二次函數的概念:形如 的函數.
2、拋物線 的頂點坐標是( );對稱軸是直線 .
3、當a>0時拋物線的開口向上;當a<0時拋物線的開口向下. 越大,拋物線的開口越小; 越小,拋物線的開口越大. 相同的拋物線,通過平移(或旋轉、軸對稱)一定能夠重合.
4、a、b同號時拋物線的對稱軸在y軸的左側;a、b異號時拋物線的對稱軸在y軸的右側.拋物線與y軸的交點坐標是(0,C).
5、二次函數解析式的三種形式:
(1)一般式: (2)頂點式:
(3)交點式: ,拋物線與x軸的交點坐標是( )和( ).
6、拋物線的平移規律:從 到 ,抓住頂點從(0,0)到(h,k).
7、(1)當 >0時,一元二次方程 有兩個實數根 ,拋物線 與x軸的交點坐標是A( )和B( )。
(2)當 =0時,一元二次方程 有兩個相等的實數根(或說一個根) ,拋物線 的頂點在x軸上,其坐標是( ).
(3)當 <0時,一元二次方程 沒有實數根,拋物線 與x軸沒有交點.
8、二次函數的最值問題和增減性:

系數a的符號 時, 最值

增減性

a>0
最小值
時y隨x的增大而減小.

a<0
最大值 時y隨x的增大而增大.

相似三角形
一、 復習目標:
1. 鞏固相似三角形的概念。掌握相似三角形的性質。會運用復習相似三角形的判定判斷兩個三角形相似。
2、會利用三角形相似,證明角相等,線段成比例,表示線段的長等。
3、能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量物體內徑)等的一些實際問題。
4、能把實際問題轉化成有關相似三角形的數學模型。
二、知識梳理
1.相似三角形的定義:
對應角相等、對應邊成比例的三角形叫做相似三角形。
2.相似比
相似三角形的對應邊的比,叫做相似三角形的相似比。
△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那麼△A/B/C/與 △ABC的相似比為_____1:2____.
二、三角形的識別、性質和應用
1、識別
①如果一個三角形的兩角分別與另一個三角形的兩角對應相等,那麼這兩個三角形相似.
②如果一個三角形的兩條邊分別與另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

③如果一個三角形的三條邊分別與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似.

2、性質:兩個三角形相似,則:
①它們的對應邊成比例,對應角相等;②它們的對應高、對應中線、對應角平分線的比等於相似比;
③它們的周長比等於相似比;面積比等於相似比的平方.
3、比例線段:
(1)比例的基本性質:如果a:b=c:d,那麼 反過來:如果 那麼:a:b=c:d。
(2)b是線段a、d的比例中項,則 。反過來亦成立。
4、黃金分割:
(1)如果B是線段AC的黃金分割點(AC>BC),則AC:BC= =0.618
(2)黃金三角形的作法及性質,並會推廣黃金矩形的性質。
5、相似多邊形的定義及性質 6、圖形位似的定義及性質

圓的基本性質
圓 基本元素:圓的定義,圓心,半徑,弧,弦,弦心距
的 垂徑定理
認 對稱性:旋轉不變性,軸對稱,中心對稱(強)
識 圓心角、弧、弦、弦心距的關系
與圓有關的角:圓心角,圓周角
弧長,扇形的面積,弓形的面積,及組合的幾何圖形
圓中的有關計算:
圓錐的側面積、全面積
一、圓的概念
1、圓的定義:線段OA繞著它的一個端點O旋轉一周,另一個端點A所形成的封閉曲線,叫做圓.點O叫做圓心,線段OP叫做半徑。
2、弧:圓上任意兩點間部分叫做圓弧,簡稱弧。優弧、劣弧以及表示方法。
3、弦,弦心距,圓心角,圓周角,
點和圓的位置關系:
如果P是圓所在平面內的一點,d 表示P到圓心的距離,r表示圓的半徑,則:
(1)d<r → (2)d=r → (3)d>r →
二、幾點確定一個圓
問題:(1)經過一個已知點可以畫多少個圓?
(2)經過兩個已知點可以畫多少個圓?這樣的圓的圓心在怎樣的一條直線上?
(3)過同在一條直線上的三個點能畫圓嗎?
定理:經過 確定一個圓。
三、圓的性質定理
1、垂徑定理:垂直弦的直徑平分弦,並且平分弦所對的弧(圓的軸對稱性);
2、推論1:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的弧
3、推論2:平分弧的直徑垂直平分弧所對的弦
4、圓心角定理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等。
5、圓周角定理: 一條弧所對的圓周角等於它所對的 。
推論:1、半圓(或直徑)所對的圓周角是 ,90°圓周角所對的弦是 。
2、同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等。
五、弧長及扇形的面積圓錐的側面積和全面積
1、弧長公式:
2、扇形的面積:
如何在平時提高數學成績
1、按部就班 數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。
2、強調理解 概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
3、基本訓練 學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。
4、重視平時考試出現的錯誤。 定一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
快速提高數學成績的五大攻略
攻略一:概念記清,基礎夯實。數學≠做題,千萬不要忽視最基本的概念、公理、定理和公式,特別是「不定項選擇題」就要靠清晰的概念來明辨對錯,如果概念不清就會感覺模稜兩可,最終造成誤選。因此,要把已經學過的教科書中的概念整理出來,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
攻略二:適當做題,巧做為王。有的同學埋頭題海苦苦掙扎,輔導書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區。數學需要實踐,需要大量做題,但要「埋下頭去做題,抬起頭來想題」,在做題中關注思路、方法、技巧,要「苦做」更要「巧做」。考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
攻略三:前後聯系,縱橫貫通。在做題中要注重發現題與題之間的內在聯系,絕不能「傻做」。在做一道與以前相似的題目時,要會通過比較,發現規律,穿透實質,以達到「觸類旁通」的境界。特別是幾何題中的輔助線添法很有規律性,在做題中要特別記牢。
攻略四:記錄錯題,避免再犯。俗話說,「一朝被蛇咬,十年怕井繩」,可是同學們常會一次又一次地掉入相似甚至相同的「陷阱」里。因此,我建議大家在平時的做題中就要及時記錄錯題,還要想一想為什麼會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。畢竟,考試當中是「分分必爭」,一分也失不得。
攻略五:集中兵力,攻下弱點。每個人都有自己的「軟肋」,如果試題中涉及到你的薄弱環節,一定會成為你的最痛。因此一定要通過短時間的專題學習,集中優勢兵力,打一場漂亮的殲滅戰,避免變成「瘸腿」。

熱點內容
是在下輸了是什麼梗 發布:2025-05-15 01:59:54 瀏覽:289
教育課 發布:2025-05-15 00:39:16 瀏覽:887
筆畫視頻教學 發布:2025-05-15 00:06:14 瀏覽:99
小班幼兒英語 發布:2025-05-15 00:00:31 瀏覽:854
思教育網 發布:2025-05-14 22:14:17 瀏覽:988
師德師紀自查小結 發布:2025-05-14 21:09:36 瀏覽:534
中學英語下載 發布:2025-05-14 20:01:44 瀏覽:498
小蘋果舞蹈教學兒童版 發布:2025-05-14 18:06:07 瀏覽:916
高三語文卷 發布:2025-05-14 17:40:03 瀏覽:761
五年級上冊語文達標卷 發布:2025-05-14 16:38:37 瀏覽:871