當前位置:首頁 » 歷物理化 » 石油有機化學

石油有機化學

發布時間: 2021-08-06 10:00:44

⑴ 石油 化學名稱

石油的化學成分

組成石油的化學元素主要是碳 (83% ~ 87%)、氫(11% ~ 14%),其餘為硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)及微量金屬元素(鎳、釩、鐵等)。由碳和氫化合形成的烴類構成石油的主要組成部分,約佔95% ~ 99%,含硫、 氧、氮的化合物對石油產品有害, 在石油加工中應盡量除去。不同產地的石油中,各種烴類的結構和所佔比例相差很大, 但主要屬於烷烴、環烷烴、芳香烴三類。

原油中主要含有烴類,佔90%以上。另有非烴化合物,有機硫化合物、含氧化合物(千分之一到百分之三)、含氮化合物(含量極少,千分之幾到萬分之幾)。

烴類化合物中,烷烴含量與石油類型有關,含量高的在50%--70%;含量低的約15%。環烷烴在原油中含量較多,其中環戊烷系和環己烷系為主。
另有芳香烴(單環、多環)。

原油各組分的比例應該只能大致,隨石油類型不同。

中文名稱: 液化石油氣 英文名稱: Liquefied petroleum ges

液化石油氣
中文名稱: 液化石油氣

英文名稱: Liquefied petroleum ges

中文名稱2: 壓凝汽油

英文名稱2: Compressed petroleum gas

理化特性

主要成分: 乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等。

外觀與性狀: 無色氣體或黃棕色油狀液體, 有特殊臭味。

閃點(℃): -74

引燃溫度(℃): 426~537

爆炸上限%(V/V): 33

爆炸下限%(V/V): 5

主要用途: 用作石油化工的原料, 也可用作燃料。

健康危害: 本品有麻醉作用。急性中毒:有頭暈、頭痛、興奮或嗜睡、惡心、嘔吐、脈緩等;重症者可突然倒下,尿失禁,意識喪失,甚至呼吸停止。可致皮膚凍傷。慢性影響:長期接觸低濃度者,可出現頭痛、頭暈、睡眠不佳、易疲勞、情緒不穩以及植物神經功能紊亂等。

環境危害: 對環境有危害,對水體、土壤和大氣可造成污染。

燃爆危險: 本品易燃,具麻醉性。

危險特性: 極易燃,與空氣混合能形成爆炸性混合物。遇熱源和明火有燃燒爆炸的危險。與氟、氯等接觸會發生劇烈的化學反應。其蒸氣比空氣重,能在較低處擴散到相當遠的地方,遇火源會著火回燃。

液化石油氣是石油在提煉汽油、煤油、柴油、重油等油品過程中剩下的一種石油尾氣,通過一定程序,對石油尾氣加以回收利用,採取加壓的措施,使其變成液體,裝在受壓容器內,液化氣的名稱即由此而來。它在氣瓶內呈液態狀,一旦流出會汽化成比原體積大約二百五十倍的可燃氣體,並極易擴散,遇到明火就會燃燒或爆炸。

⑵ 高一 化學 有機化學-石油煉制,乙烯 請詳細解答,謝謝! (28 20:30:43)

甲烷與溴水不反應,而乙烯能夠與溴水反應,所以題中溴水質量增加了7g,那麼根據質量守恆定律,這個增重的質量就是乙烯的質量,所以:
質量比:m甲烷:m乙烯=8:7
摩爾比:n甲烷:n乙烯=8/16:7/28
標准狀況下,摩爾比等於體積比,所以應該是2:1

⑶ 石油中為啥要學有機化學呢

首先石油很重要,其次有機化學更重要,最後石油是作為引入你進入有機化學的一個門檻。有機化學又不難學的,有很多規律可循,挺好玩的

⑷ 石油有哪幾大類化學衍生產品越詳細越好

石油衍生品可分為:石油燃料、石油溶劑與化工原料、潤滑劑、石蠟、石油瀝青、石油焦等6類。其中,各種燃料產量最大,約占總產量的90%;各種潤滑劑品種最多,產量約佔5%。各國都制定了產品標准,以適應生產和使用的需要。

汽油:是消耗量最大的品種。汽油的沸點范圍(又稱餾程)為30~205°C,密度為0.70~0.78克/厘米3,商品汽油按該油在汽缸中燃燒時抗爆震燃燒性能的優劣區分,標記為辛烷值70、80、90或更高。號俞大,性能俞好,汽油主要用作汽車、摩托車、快艇、直升飛機、農林用飛機的燃料。商品汽油中添加有添加劑(如抗爆劑四乙基鉛)以改善使用和儲存性能。受環保要求,今後將限制芳烴和鉛的含量。

噴氣燃料:主要供噴氣式飛機使用。沸點范圍為60~280℃或150~315℃(俗稱航空汽油)。為適應高空低溫高速飛行需要,這類油要求發熱量大,在-50C不出現固體結晶。

煤油:沸點范圍為180~310℃ 主要供照明、生活炊事用。要求火焰平穩、光亮而不冒黑煙。目前產量不大。

柴油:沸點范圍有180~370℃和350~410℃兩類。對石油及其加工產品,習慣上對沸點或沸點范圍低的稱為輕,相反成為重。故上述前者稱為輕柴油,後者稱為重柴油。商品柴油按凝固點分級,如10、-20等,表示低使用溫度,柴油廣泛用於大型車輛、船艦。由於高速柴油機(汽車用)比汽油機省油,柴油需求量增長速度大於汽油,一些小型汽車也改用柴油。對柴油質量要求是燃燒性能和流動性好。燃燒性能用十六烷值表示愈高愈好,大慶原油製成的柴油十六烷值可達68。高速柴油機用的輕柴油十六烷值為42~55,低速的在35以下。

燃料油:用作鍋爐、輪船及工業爐的燃料。商品燃料油用粘度大小區分不同牌號。

石油溶劑:用於香精、油脂、試劑、橡膠加工、塗料工業做溶劑,或清洗儀器、儀表、機械零件。

石蠟油:包括石蠟(占總消耗量的10%)、地蠟、石油脂等。石蠟主要做包裝材料、化妝品原料及蠟製品,也可做為化工原料產脂肪酸(肥皂原料)。

潤滑油:從石油製得的潤滑油約占總潤滑劑產量的95%以上。除潤滑性能外,還具有冷卻、密封、防腐、絕緣、清洗、傳遞能量的作用。產量最大的是內燃機油(佔40%),其餘為齒輪油、液壓油、汽輪機油、電器絕緣油、壓縮機油,合計佔40%。商品潤滑油按粘度分級,負荷大,速度低的機械用高粘度油,否則用低粘度油。煉油裝置生產的是採取各種精製工藝製成的基礎油,再加多種添加劑,因此具有專用功能,附加產值高。

潤滑脂 :俗稱黃油,是潤滑劑加稠化劑製成的固體或半流體,用於不宜使用潤滑油的軸承、齒輪部位。

石油瀝青:主要供道路、建築用。

石油焦:用於冶金(鋼、鋁)、化工(電石)行業做電極。

除上述石油商品外,各個煉油裝置還得到一些在常溫下是氣體的產物,總稱煉廠氣,可直接做燃料或加壓液化分出液化石油氣,可做原料或化工原料。 煉油廠提供的化工原料品種很多,是有機化工產品的原料基地,各種油、煉廠氣都可按不同生產目的、生產工藝選用。常壓下的氣態原料主要制乙烯、丙烯、合成氨、氫氣、乙炔、碳黑。液態原料(液化石油氣、輕汽油、輕柴油、重柴油)經裂解可製成發展石油化工所需的絕大部分基礎原料(乙炔除外),是發展石油化工的基礎。目前,原油因高溫結焦嚴重,還不能直接生產基本有機原料。煉油廠還是苯、甲苯、二甲苯等重要芳烴的提供者。最後應當指出,汽油、航空煤油、柴油中或多或少加有添加劑以改進使用、儲存性能。各個煉油裝置生產的產物都需按商品標准加入添加劑和不同裝置的油進行調和方能作為商品使用。石油添加劑用量少,功效大,屬化學合成的精細化工產品,是發展高檔產品所必需的,應大力發展。

石油衍生物
五十年前的有機化學品大多由煤衍生,現在由石油所取代,使用分餾法可以分段收集沸點相近的物質,隨著沸點升高,餾出物的平均分子量也跟著增加。第一段的餾出物只含有碳原子數為一到四,沸點在攝氏二十五度內的分子;沸點范圍在攝氏二十度到兩網路間的烴類混合物其碳原子數為四至二十,可以提煉汽油;溫度更高的范圍可蒸餾出煤油、柴油和潤滑油等。任何餾出的過量分子都可裂解成較小的分子,以增加生產汽油或化學工業的原料。

請採納!

⑸ 石油有機化學專利號

石油主要是碳氫化合物的混合體。 組成石油的化學元素主要是碳 (83% ~ 87%)、氫(11% ~ 14%),其餘為硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)及微量金屬元素(鎳、釩、鐵等)。由碳和氫化合形成的烴類構成石油的主要組成。

⑹ 高一 化學 有機化學-石油煉制,乙烯 請詳細解答,謝謝! (28 20:34:24)

選擇BD 混合氣體可以為甲烷和乙烯;也可以為甲烷和丙炔。
首先應說明所得產物是在標准狀況下測得的。即CO2是0.15mol,H2O是0.2mol。即能求得混合氣體的平均含碳為1.5,平均含氫為4.
有C1.5H4,則必有一氣體的含碳原子數為一,只有甲烷,故B正確。
另一氣體的氫原子數必須為4,且碳原子數大於一。那麼乙烯和丙炔符合要求。

⑺ 石油的化學組成

石油的化學組成可以從組成石油的元素、化合物、餾分和組分加以認識,必須明確這是從不同側面去認識同一問題。

(一)石油的元素組成

由於石油沒有確定的化學成分,因而也就沒有確定的元素組成。但其元素組成還是有一定的變化范圍。

石油的元素組成主要是碳(C)和氫(H),其次是硫(S)、氮(N)、氧(O)。世界上大多數石油的元素組成一般為:碳含量介於80%~88%之間,氫含量佔10%~14%,硫、氮、氧總量在0.3%~7%之間變化,一般低於2%~3%,個別石油含硫量可高達10%。世界各地原油的元素組成盡管千差萬別,但均以碳、氫兩種元素占絕對優勢,一般在95%~99%之間。碳、氫元素重量比介於5.7~7.7之間,平均值約為6.5。原子比的平均值約為0.57(或1∶1.8)。

石油中硫含量,據蒂索(B.P.Tissot,1978)等對9347個樣品的統計,平均為0.65%(重量),其頻率分布具雙峰型(圖2-2),多數樣品(約7500個)的含硫量小於1%,少數樣品(1800個)的含硫量大於1%,1%處為兩峰的交叉點。根據含硫量可把原油概略地分為高硫原油(含硫量大於1%)和低硫原油(含硫量小於1%)。原油中的硫主要來自有機物的蛋白質和圍岩的含硫酸鹽礦物如石膏等,故產於海相環境的石油較形成於陸相環境的石油含硫量高。由於硫具有腐蝕性,因此含硫量的高低關繫到石油的品質。含硫量變化范圍很大,從萬分之幾到百分之幾。

圖2-2 不同時代和成因的9347個石油樣品中含硫分布(據Tissot&Welte,1978)

石油中含氮量在0.1%~1.7%之間,平均值0.094%。90%以上的原油含氮量小於0.2%,最高可達1.7%(美國文圖拉盆地的石油),通常以0.25%作為貧氮和富氮石油的界限。

石油的含氧量在0.1%~4.5%之間,主要與其氧化變質程度有關。

石油的元素組成,不同研究者的估算值不甚一致。通常碳、氫兩元素主要賦存在烴類化合物中,是石油的主體,而硫、氮、氧元素組成的化合物大多富集在渣油或膠質和瀝青質中。

除上述5種主要元素之外,還從原油灰分(石油燃燒後的殘渣)中發現有50多種元素。這些元素雖然種類繁多,但總量僅占石油重量的十萬分之幾到萬分之幾,在石油中屬微量元素。石油中的微量元素,以釩、鎳兩種元素含量高、分布普遍,且由於其與石油成因有關聯,故最為石油地質學家重視。V/Ni比值可作為區分是來自海相環境還是陸相環境沉積物的標志之一。一般認為V/Ni>1是來自海相環境,V/Ni<1是來自陸相環境。

(二)石油的化合物組成

概要地說,組成石油的化合物多是有機化合物,作為雜質混入的無機化合物不多,含量甚微,可以忽略不計。組成石油的5種主要元素構成的化合物是一個龐大的家族———有機化合物。現今從全世界經過分析的不同原油中分離出來的有機化合物有近500種,還不包括有機金屬化合物。其中約200種為非烴,其餘為烴類。原油的大半部分是由150種烴類組成。石油的化合物組成,歸納起來可以分為烴類和非烴類化合物兩大類,其中烴類化合物是主要的,這與元素組成以C、H占絕對優勢相一致。

1.烴類化合物

在化學上,烴類可以分為兩大類:飽和烴和不飽和烴。

(1)飽和烴

在石油中飽和烴在數量上佔大多數,一般占石油所有組分的50%~60%。可細分為正構烷烴、異構烷烴和環烷烴。

正構烷烴平均占石油體積的15%~20%,輕質原油可達30%以上,而重質原油可小於15%。石油中已鑒定出的正烷烴為C1—C45,個別報道曾提及見有C60的正烷烴,但石油大部分正烷烴碳數≤C35。在常溫常壓下,正烷烴C1—C4為氣態,C5—C15為液態,C16以上為固態(天然石蠟)。

不同類型原油的正構烷烴分布情況如圖2-3所示。由圖可見,盡管正構烷烴的分布曲線形態各異,但均呈一條連續的曲線,且奇碳數與偶碳數烴的含量總數近於相等。根據主峰碳數的位置和形態,可將正烷烴分布曲線分為三種基本類型:①主峰碳小於C15,且主峰區較窄;②主峰碳大於C25,主峰區較寬;③主峰區在C15—C25之間,主峰區寬。上述正烷烴的分布特點與成油原始有機質、成油環境和成熟度有密切關系,因而常用於石油的成因研究和油源對比。

石油中帶支鏈(側鏈)的異構烷烴以≤C10為主,常見於C6—C8中;C11—C25較少,且以異戊間二烯型烷烴最重要。石油中的異戊間二烯型烷烴(圖2-4),一般被認為是從葉綠素的側鏈———植醇演化而來,因而它是石油為生物成因的標志化合物。這種異構烷烴的特點是每四個碳原子帶有一個甲基支鏈。現已從石油中分離出多種異戊間二烯型烷烴化合物,其總量達石油的0.5%。其中研究和應用較多的是2,6,10,14-四甲基十五烷(姥鮫烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一來源的石油,各種異戊二烯型化合物極為相似,因而常用之作為油源對比的標志。

圖2-3 不同類型石油的正構烷烴分布曲線圖(據Martin,1963)

圖2-4 類異戊間二烯型烷烴同系物立體化學結構圖

環烷烴在石油中所佔的比例為20%~40%,平均30%左右。低分子量(≤C10)的環烷烴,尤以環戊烷(C5-五員環)和環己烷(C6-六員環)及其衍生物是石油的重要組成部分,且一般環己烷多於環戊烷。中等到大分子量(C10—C35)的環烷烴可以是單環到六環。石油中環烷烴以單環和雙環為主,占石油中環烷烴的50%~55%,三環約佔20%,四環以上佔25%左右。在石油中多環環烷烴的含量隨成熟度增加而減少,故高成熟原油中1~2環的環烷烴顯著增多。

在常溫常壓下,環丙烷(C3H6)和甲基環丙烷(C4H8)為氣態,除此之外所有其他單環環烷烴均為液態,兩環以上(>C11)的環烷烴為固態。

(2)不飽和烴

石油中的不飽和烴主要是芳香烴和環烷芳香烴,平均占原油重量的20%~45%。此外原油中偶可見有直鏈烯烴。烯烴及不飽和環烴,因其極不穩定,故很少見。

石油中已鑒定出的芳香烴,根據其結構不同可以分為單環、多環和稠環三類,而每個類型的主要分子常常不是母體,而是烷基衍生物。

單環芳烴包括苯、甲苯、二甲苯等。

多環芳烴有聯苯、三苯甲烷等。

稠環芳烴包括萘(二環稠合),蒽和菲(三環稠合)以及苯並蒽和屈(四環稠合)。

芳香烴在石油中以苯、萘、菲三種化合物含量最多,其主要分子也常常以烷基的衍生物出現。如前者通常出現的主要是甲苯,而不是苯。

環烷芳香烴包含一個或幾個縮合芳環,並與飽和環及鏈烷基稠合在一起。石油中最豐富的環烷芳香烴是兩環(一個芳環和一個飽和環)構成的茚滿和萘滿以及它們的甲基衍生物。而最重要的是四環和五環的環烷芳烴,其含量及分布特徵常用於石油的成因研究和油源對比。因為它們大多與甾族和萜族化合物有關(芳構化),而甾族和萜族化合物是典型的生物成因標志化合物。

2.非烴化合物

石油中的非烴化合物是指除C、H兩種主要元素外,還含有硫或氮或氧,抑或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素的含量不多,但含這些元素的化合物卻不少,有時可達石油重量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物和噻吩(以含硫的雜環化合物形式存在),在重質石油中含量較為豐富。

石油中所含的硫是一種有害的雜質,因為它容易產生硫化氫(H2S)、硫化鐵(FeS)、亞硫酸(H2SO3)或硫酸(H2SO4)等化合物,對機器、管道、油罐、煉塔等金屬設備造成嚴重腐蝕,所以含硫量常作為評價石油質量的一項重要指標。

通常將含硫量大於2%的石油稱為高硫石油;低於0.5%的稱為低硫石油;介於0.5%~2%之間的稱為含硫石油。一般含硫量較高的石油多產自碳酸鹽岩系和膏鹽岩系含油層,而產自砂岩的石油則含硫較少。我國原油多屬低硫石油(如大慶、任丘、大港、克拉瑪依油田)和含硫石油(如勝利油田)。原蘇聯伊申巴石油含硫量高達2.25%~7%,其他如墨西哥、委內瑞拉和中東的石油含硫量也較高。

(2)含氮化合物

石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及其同系物;另一組為非鹼性化合物,有卟啉、吲哚、咔唑及其同系物,其中以含釩和鎳的金屬卟啉化合物最為重要。

原油中的卟啉化合物首先是由特雷勃斯(C.Treibs,1934)發現的。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物的葉綠素和動物的氯化血紅素轉化而來。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以四個吡咯核為基本結構,由4個次甲基(—CH)橋鍵聯結的含氮化合物,又稱族化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似(圖2-5)。

圖2-5 葉綠素(A)與原油中的卟啉(B)、植烷(Ph)、姥鮫烷(Pr)結構比較圖(據G.D.Hobson等,1981)

但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中新生代地層中形成的原油含卟啉較多,而古生代地層中石油含卟啉甚低或不含。這可能與卟啉的穩定性差有關。在高溫(>250℃)或氧化條件下,卟啉將發生開環裂解而遭破壞。

此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

(3)含氧化合物

石油中含氧化合物已鑒定出50多種,包括有機酸、酚和酮類化合物。其中主要是與酸官能團(—COOH)有關的有機酸,有C2~24的脂肪酸,C5~10的環烷酸,C10~15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱石油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03%~1.9%之間。環烷酸易與鹼金屬作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此地下水中環烷酸鹽的存在是找油的標志之一。

(三)石油的餾分組成

石油是若干種烴類和非烴有機化合物的混合物,每種化合物都有自己的沸點和凝點。石油的餾分就是利用組成石油的化合物各自具有不同沸點的特性,通過對原油加熱蒸餾,將石油分割成不同沸點范圍的若幹部分,每一部分就是一個餾分。分割所用的溫度區間(餾程)不同,餾分就有所差異(表2-1)。

表2-1 石油的餾分組成

據亨特對美國一種相對密度為35°API(0.85g/cm3)的環烷型原油所做的分析結果,以脫氣後各餾分總和計算,各餾分的體積百分比為:汽油27%,煤油13%,柴油12%,重質瓦斯油10%,潤滑油20%,渣油18%。其與化合物組成的關系如圖2-6所示。

通常石油的煉制過程可以看作就是對石油的分餾,餾程的控制是根據原油的品質及對油品質量的具體要求來確定的。現代煉油工業為了提高石油中輕餾分的產量和提高產品質量,除了採用直餾法外,還採用催化熱裂化、加氫裂化、熱裂解、石油的鉑重整等一系列技術措施。例如在常壓下分餾出的汽油只佔原油的15%~20%,在採用催化熱裂化後,可使汽油的產量提高到50%~80%,以滿足各方面以汽油作能源燃料的需求。

圖2-6 相對密度為35°API的環烷型石油的餾分與化合物組成的關系圖(據J.M.Hunt,1979)

(四)石油的組分組成

石油組分分析是過去在石油研究中曾廣泛使用的一種方法。它是利用有機溶劑和吸附劑對組成石油的化合物具有選擇性溶解和吸附的性能,選用不同有機溶劑和吸附劑,將原油分成若幹部分,每一部分就是一個組分。

一般在作組分分析之前,先對原油進行分餾,去掉低於210℃的輕餾分,切取>210℃的餾分進行組分分析(圖2-7)。凡能溶於氯仿和四氯化碳的組分稱為油質,它們是石油中極性最弱的部分,其成分主要是飽和烴和一部分低分子芳烴。溶於苯的組分稱為苯膠質,其成分主要是芳烴和一些具有芳環結構的含雜元素的化合物(主要為含S、N、O的多環芳烴)。用酒精和苯的混合液(或其他極性更強的如甲醇、丙酮等)作溶劑,可以得到酒精-苯膠質(或其他相應組分),此類膠質的成分主要是含雜元素的非烴化合物。用石油醚分離,溶於石油醚的部分是油質和膠質。其中能被硅膠吸附的部分是膠質;不被硅膠吸附的部分是油質;剩下不溶於石油醚的組分(但可溶於苯、二硫化碳和三氯甲烷等中性有機溶劑,呈膠體溶液,可被硅膠吸附)為瀝青質;後者是渣油的主要組分,其主要成分是結構復雜的大分子非烴化合物。

顯然,石油的組分組成是一個比較模糊的概念,特別是膠質和瀝青質,在石油地質學中使用頻率較高,使用上也不是很嚴謹。膠質和瀝青質是一些分子量較大的復雜化合物的混合體。膠質的視分子量約在300~1200;瀝青的視分子量多大於10000,可能達到甚至於超過50000,其直徑平均為40~50nm。膠質和瀝青質占原油的0~40%,平均為20%。膠質和瀝青質可能主要是由多環芳核或環烷-芳核和雜原子鏈如含S、N、O等的化合物組成,其平均元素組成如表2-2所示,大量分布於未成熟以及經過生物降解和變質的原油中,尤其在天然瀝青礦物或瀝青砂岩中更為多見。

石油的組分在石油的成因演化研究和原油品質評價中經常涉及。

圖2-7 原油組分分析流程圖

表2-2 膠質和瀝青質的平均元素組成

⑻ 石油與化學工業的關系是什麼

石油是有機化學工業的重要原料。

⑼ 什麼是來自石油的重要有機化工原料 什麼是具有果香味的有機物

芳香烴,通常指分子中含有苯環結構的碳氫化合物。是閉鏈類的一種。具有苯環基本結構,歷史上早期發現的這類化合物多有芳香味道,所以稱這些烴類物質為芳香烴,後來發現的不具有芳香味道的烴類也都統一沿用這種叫法。例如苯、二甲苯、萘等。苯的同系物的通式是CnH2n-6 (n≥6)。芳香烴的π 電子數為4n+2 (n為非負整數)。

⑽ 石油的概念及化學組成

(一)石油的概念

石油是存在於地下岩石孔隙中的以液態烴為主體的可燃有機礦產。地下油氣藏中的石油是氣態、液態及固態烴類及其衍生物的混合物,在成分上以烴類為主,含有數量不等的非烴化合物及多種微量元素。在相態上以液態為主,溶有大量烴氣及少量非烴氣,以及數量不等的固態烴類及非烴類物質。油氣藏中組成石油的各種成分和相態的比例因地而異,因此,石油沒有確定的化學成分和物理常數。

(二)石油的元素組成

石油沒有確定的化學成分,因而也就沒有確定的元素組成。但組成石油的化學元素主要是碳(C)和氫(H),其次是硫(S)、氮(N)、氧(O)。不同產地的石油元素組成含量存在差異(表1-1)。

石油中碳含量一般為80%~88%,氫含量為10%~14%,兩種元素占絕對優勢,一般含量在95%~99%之間。硫、氮、氧總量在0.3%~7%之間變化,一般含量低於2%~3%,個別石油含硫量可高達10%。

由於硫具有腐蝕性,因此含硫量的高低關繫到石油的品質。原油中含硫量變化很大,從萬分之幾(克拉瑪依,0.05%)到百分之幾(委內瑞拉,5.48%)。根據含硫量可把原油分為高硫原油(含硫量大於1%)和低硫原油(含硫量小於1%)。原油中的硫主要來自有機物的蛋白質和圍岩的含硫酸鹽礦物如石膏等,故產於海相環境的石油較形成於陸相環境的石油含硫量高。

原油的含氮量在0.1%~1.7%之間,平均值0.094%。90%以上的原油含氮量小於0.2%。原油的含氧量在0.1%~4.5%之間,主要與其氧化變質程度有關。

表 1 -1 石油的元素組成 ( 質量分數/%)

( 據石毓程,1980,有改動)

除上述 5 種主要元素之外,還從原油灰分 ( 石油燃燒後的殘渣) 中發現有鐵 ( Fe) 、鈣 ( Ca) 、鎂 ( Mg) 、硅 ( Si) 、鋁 ( Al) 、釩 ( V) 、鎳 ( Ni) 、銅 ( Cu) 、銻 ( Sb) 、錳( Mn) 、鍶 ( Sr) 、鋇 ( Ba) 、硼 ( B) 、鈷 ( Co) 、鋅 ( Zn) 、鉬 ( Mo) 、鉛 ( Pb) 、錫( Sn) 、鈉 ( Na) 、鉀 ( K) 、磷 ( P) 、鋰 ( Li) 、氯 ( Cl) 、鉍 ( Bi) 、鈹 ( Be) 、鍺( Ge) 、銀 ( Ag) 、砷 ( As) 、鎵 ( Ga) 、金 ( Au) 、鈦 ( Ti) 、鉻 ( Cr) 、鎘 ( Cd) 等 30多種元素。這些元素雖然種類繁多,但總量僅占石油質量的萬分之幾,在石油中屬微量元素,或稱之為灰分元素。

在石油微量元素中,以釩 ( V) 、鎳 ( Ni) 兩種元素含量高,分布普遍,且鑒於其與石油成因有關,最為石油地質學家所重視。V/Ni 比值可作為區分是來自海相環境還是陸相環境沉積物的標志之一。一般 V/Ni > 1 被認為是海相環境,V/Ni < 1 為陸相環境。

( 三) 石油的化合物組成

組成石油的主要元素是碳 ( C) 、氫 ( H) 、硫 ( S) 、氮 ( N) 、氧 ( O) ,但由這 5 種元素構成的化合物卻是龐大的。籠統地說,組成石油的化合物多是有機化合物; 作為雜質混入的無機化合物不多,含量甚微,可以忽略不計。石油的化合物組成,歸納起來可以分為烴和非烴兩大類,其中烴類是主要的,這與元素組成以碳 ( C) 、氫 ( H) 占絕對優勢相一致。

現今從全世界經過分析的不同原油中分離出來的有機化合物有近 500 種,還不包括有機金屬化合物。其中約 200 種為非烴,其餘為烴類。原油的大半是由 150 種烴類組成的。

1. 烴類化合物

在化學上,烴類可以分為兩大類: 飽和烴———烷烴、環烷烴,不飽和烴———烯烴、芳香烴和環烷-芳香烴。

(1)飽和烴

在石油中飽和烴在數量上佔大多數,一般占石油所有組分的50%~60%。可細分為烷烴和環烷烴。

在常溫常壓下,烷烴C1—C4為氣態,C5—C15為液態,C16以上為固態(天然石蠟)。

圖1-1 異戊二烯型烷烴同系物立體化學結構圖

石油中帶支鏈(側鏈)的異構烷烴以≤C10為主,常見於C6—C8中;C11—C25較少,且以異戊二烯型烷烴最重要。石油中的異戊二烯型烷烴(圖1-1),一般被認為是由葉綠素的側鏈———植醇演化而來的,因而是石油為生物成因的標志化合物。現已從石油中分離出多種異戊二烯型化合物,其總量達石油的0.5%。其中研究和應用較多的是2,6,10,14-四甲基十五烷(姥鮫烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一來源的石油,各種異戊二烯型化合物極為相似。因而常用作油源對比的標志。

環烷烴在石油中所佔的比例為20%~40%,平均30%左右。低分子量(<C10)的環烷烴,尤以環戊烷(C5—五員環)和環己烷(C6—六員環)及其衍生物為石油的重要組成部分,且一般環己烷多於環戊烷。中等到高分子量(C10—35)的環烷烴可以是單環到六環。石油中環烷烴以單環和雙環為主,占石油中環烷烴的50%~55%,三環約佔20%,四環以上佔25%左右。在石油中多環環烷烴的含量隨成熟度增加而減少,故高成熟原油中1-2環的環烷烴顯著增多。

在常溫常壓下,環丙烷(C3H6)和甲基環丙烷(C4H8)為氣態;除此之外,所有其他單環環烷烴均為液態,兩環以上(>C11)的環烷烴為固態。

(2)不飽和烴

石油中的不飽和烴主要是芳香烴和環烷-芳香烴,平均占原油質量的20%~45%。此外原油中偶見有直鏈烯烴。烯烴及不飽和環烴,因其極不穩定,故很少見。

石油中已鑒定出的芳香烴,根據其結構不同可以分為單環、多環和稠環三類,而每個類型的主要分子常常不是母體,而是烷基衍生物。

單環芳烴包括苯、甲苯、二甲苯等;多環芳烴有聯苯、三苯甲烷等;稠環芳烴包括萘(二環稠合)、蒽和菲(三環稠合),以及苯並蒽和崫(四環稠合)。

芳香烴在石油中以苯、萘、菲三種化合物含量最多,其主要分子也常常是以烷基的衍生物出現。如前者通常出現的主要是甲苯,而不是苯。

環烷-芳香烴包含一個或幾個縮合芳環,並與飽和環及鏈烷基稠合在一起。石油中最豐富的環烷-芳香烴是兩環(一個芳環和一個飽和環)構成的茚滿和萘滿以及它們的甲基衍生物。而最重要的是四環和五環的環烷-芳香烴,其含量和分布特徵常用於石油的成因研究和油源對比。因為它們大多與甾族和萜族化合物有關(芳構化),而甾族和萜族化合物是典型的生物成因標志化合物。

2.非烴化合物

石油中的非烴化合物是指除碳、氫兩種主要元素外,還含有硫或氮或氧,抑或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素含量不多,但含這些元素的化合物卻不少,有時可達石油質量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是石油中碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物(H2S)和噻吩(以含硫的雜環化合物的形式存在,在重質石油中含量較為豐富)。

(2)含氮化合物

石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物的形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及卟啉、吲哚、咔唑及其同系物。其中以含釩和鎳的金屬卟啉化合物最為重要。

原油中的卟啉化合物首先是由特雷勃斯發現的(C.Treibs,1934)。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物葉綠素和動物氯化血紅素轉化來的。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以4個吡咯核為基本結構,由甲川橋聯結的含氮化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似(圖1-2)。

圖1-2 葉綠素(A)與原油中的卟啉(B)、植烷(Ph)、姥鮫烷(Pr)結構比較圖(據G.D.Hobsohetal.,1981)

但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中、新生代地層中形成的原油含卟啉較多,而古生代地層中的原油中的卟啉含量甚低或不含。這可能與卟啉的穩定性差有關。在高溫(>250℃)或氧化條件下,卟啉將發生開環裂解而破壞。

此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

(3)含氧化合物

石油中含氧化合物已鑒定出50多種。包括有機酸、酚和酮類化合物。其中主要是與酸官能團-COOH有關的有機酸,有C1—24的脂肪酸,C5—10的環烷酸,C10—15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱為石油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03%~1.9%之間。環烷酸易與鹼金屬化合作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此,地下水中環烷酸鹽的存在是找油的標志之一。

(四)石油的餾分組成

石油是數以百計的若干種烴類和非烴有機化合物的混合物,每種化合物都有自己的沸點和凝點。石油的餾分就是利用組成石油的化合物各自具有不同沸點的特性,通過對原油加熱蒸餾,將石油分餾成不同沸點范圍的若幹部分,每一部分就是一個餾分。分餾所用的溫度區間(餾程)不同,餾出物(餾分)有所差異(表1-2)。

表1-2 石油產品的大致餾程范圍

通常石油的煉制過程可以看做是對石油的分餾,餾程的控制是根據原油的品質及對油品質量的具體要求來確定的。現代煉油工業為了提高石油中輕餾分的產量和提高產品質量,除了採用直餾法外,還採用催化熱裂化、加氫裂化、熱裂解、石油的鉑重整等一系列技術措施。例如在常壓下分餾出的汽油只佔原油的15%~20%,在採用催化熱裂化後,可使汽油的產量提高到50%~80%,以滿足各方面以汽油作能源燃料的需求。

(五)石油的組分分析

石油的組分分析是利用有機溶劑和吸附劑對組成石油的化合物具有選擇性溶解和吸附的性能,選用不同有機溶劑和吸附劑,將原油分成若幹部分,每一部分就是一個組分。

一般在做組分分析之前,先對原油進行分餾,去掉低於210℃的輕餾分,切取>210℃的餾分進行組分分析。凡能溶於氯仿和四氯化碳的組分稱為油質,它們是石油中極性最弱的部分,其成分主要是飽和烴和一部分低分子芳烴。溶於苯的組分稱為苯膠質,其成分主要是芳烴和一些具有芳環結構的含雜元素的化合物(主要為含硫、氮、氧的多環芳烴)。用酒精和苯的混合液(或其他極性更強的如甲醇、丙酮等)作溶劑,可以得到酒精-苯膠質(或其他相應組分),此類膠質的成分主要是含雜元素的非烴化合物。用石油醚分離,溶於石油醚的部分是油質和膠質。其中能被硅膠吸附的部分是膠質,不被硅膠吸附的部分是油質,剩下不溶於石油醚的組分(但可溶於苯、二硫化碳和三氯甲烷等中性有機溶劑,呈膠體溶液,可被硅膠吸附)為瀝青質。後者是渣油的主要組分,其主要成分是結構復雜的大分子非烴化合物。

熱點內容
教育寶app 發布:2025-06-29 19:11:44 瀏覽:753
天津武清區教師招聘 發布:2025-06-29 18:25:53 瀏覽:784
教師讀書活動記錄 發布:2025-06-29 16:50:45 瀏覽:654
社政教師 發布:2025-06-29 16:05:54 瀏覽:479
沒有教師資格證可以當老師嗎 發布:2025-06-29 15:39:27 瀏覽:80
一年級班主任工作計劃小學 發布:2025-06-29 12:05:08 瀏覽:959
語文是美麗的 發布:2025-06-29 10:43:39 瀏覽:78
泉州市教師招聘公告 發布:2025-06-29 10:29:35 瀏覽:858
師德專題培訓總結 發布:2025-06-29 10:28:45 瀏覽:974
學考物理試卷 發布:2025-06-29 07:17:27 瀏覽:225