当前位置:首页 » 语数英语 » 人教版七年级下册数学

人教版七年级下册数学

发布时间: 2020-11-19 04:15:20

❶ 人教版七年级下册数学课本

其内容包括

整式 整式的加减 同底数幂的乘法 幂的乘方与积的乘方 同底数幂的乘法 整式的乘法 平方差公式 完全平方公式 整式的除法 2,余角与补角 探索直角平行的条件 平行线的特征 用尺规作线段和补角

❷ 七年级下册数学复习提纲(人教版)

第五章 相交线与平行线
5.1 相交线
对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系
6.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

第七章 三角形
7.1 与三角形有关的线段
三角形(triangle)具有稳定性。

7.2 与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和
n边形内角和等于:(n-2)•180度
多边形(polygon)的外角和等于360度。

第八章 二元一次方程组
8.1 二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组
9.1 不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。

9.3 一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数
10.1 平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数
无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。

❸ 人教版七年级下册数学课本35到37页的答案

1.判断:√ ×2.(1):120° 120° 60° (2):108° 108° 72°3. 64° 26° 90° 4.略5.路线平行于AB6.(1)120° (2)都平行7.利用同位角、内错角和同旁内角的性质解决8.(1)B (2)A9.略10.略11.最后一个12.(1)真命题 (2)假命题 (3)真命题13.略14.∵PQ∥RS,而BN、CM又分别垂直于PQ、RS, ∴BN∥CM, 又∵BN、CM分别平分∠ABC、∠BCD,并互相平行, 即∠ABC=∠BCD,∴CD∥AB

❹ 人教版七年级下册数学书第24页的答案

第8题:答案:(1)因为∠l=∠2,,所以AB//EF(内错角相等,两直线平行)
(2)因为DE//BC,所以∠l=∠B,∠3=∠C(两直线平行,同位角相等)
第12题:答:(1)∠DAB=44°
理由:∵DE//BC,∠B=44°
∴∠DAB=∠B=44°(
两直线平行,
内错角相等

(2)∠EAC=57°
理由:
∵DE//BC,∠C=57°
∴∠EAC=∠C=57°(
两直线平行,
内错角相等

(3)∠BAC=79°
理由:∵∠DAB=44°,∠EAC=57°
∴∠BAC=79°
通过此题可知,∠B+∠C+∠BAC=∠DAB+∠EAC+∠BAC=180°

❺ 求人教版七年级下册数学教学计划

七年级下册数学教学计划

一、学情分析

从七年级上册数学期末考试成绩来看,本班优秀率有突破 10 人,算是达到预期目标,但及格率只达到 43% 多,与预期尚有一定的差距。总体上来看,仅管绝大多数学生学习很努力,也掌握了一定的学习数学的方法和技巧,但基础知识的不扎实成为制约他们学习的瓶颈,造成班级发展不平衡,两极分化现象严重。

二、指导思想

坚持党的十七大教育方针,以《初中数学新课程标准》为准绳,将新课程改革落到实处。以提高学生的基础知识和基本技能为根本任务,制定切实可行的教学计划,重点培养学生创新思维和应用数学的能力。通过本学期的数学教学,进一步培养学生学习数学的兴趣,激发其求知欲望。同时,完成七年级下册数学教学任务。

三、教学目标

知识技能目标:学习平行线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。同时进一步提高学生几何作图能力。过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。初步建立方程思想,学会使用代数式表示数量及数量之间的关系。态度情感目标:认识生活,感知生活,领悟数学是为生活服务。班级教学目标:优秀率:15%;合格率:50%。

四、教材分析

第五章、相交线与平行线

本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交 ②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、平面直角坐标系

本章主要内容是平面直角坐标系及其简单的应用。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。

第七章、三角形

本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第八章、二元一次方程组

本章主要学习二元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。

第九章、不等式与不等式组

本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、数据的收集、整理与描述

本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。

四、教学措施

1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。
2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。
3、营造民主、和谐、平等、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。从而体会到学习的乐趣,激发学生的学习热情。
4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通。
5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。同时狠抓中等生,辅导后进生,实现共同进步。

五、课时安排

请根据自己的教学实际情况和学生学习的实际情况制定适当的课时计划。

❻ 七年级下册人教版数学概念

1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。

2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

对顶角相等

2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角

内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。

同旁内角定义

同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。

两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。

【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。

【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。

4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.

第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。

三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.

等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。

.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;

全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。

(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到

4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形。

❼ 人教版数学七年级下册全部概念,最好还有例题

1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。

2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

对顶角相等

2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角

内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。

同旁内角定义

同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。

两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。

【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。

【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。

3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。

4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.

第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。

三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。

三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.

等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。

.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;

全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。

(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到

4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形。

❽ 七年级下册 人教版 数学题50道

若a、b互为倒数,则ab= ;若ab=1,则a、b 。
例4、(1)绝对值等于5的数是_____________。
(2)、 -5 的相反数是__________,-5 的倒数是 。
(3)、 一个数的绝对值和相反数都是 ,则这个数是___________ 。
(4)、a,b互为相反数,m,n互为倒数,则(a+b)3+ =____________.
例5、比较下列各组数的大小
① ② ③
四、应用性问题:
1、某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:
+8,-3,+12,-7,-10,-4,-8,+1,0,+10;
①,这10名同学的中最高分是多少?最低分是多少?
②,10名同学中,低于80分的占的百分比是多少?
③,10名同学的平均成绩是多少?
2、一天小明和冬冬利用温差来测量山峰的高度。冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?
3、有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24。例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24。运算式如下:(1) ,(2) ,
(3) 。
另有四个有理数3,-5,7,-13,可通过运算式(4) 使其结果等于24。
城 市 时差/ 时
纽 约 -13
巴 黎 -7
东 京 +1
芝 加 哥 -14
4、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数)。现在的北京时间是上午8∶00
(1)求现在纽约时间是多少?
(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?
5、国家规定超市里的封闭式冷冻柜至少要达到零下5℃,否则里面的食品不能得到保鲜,现知道某超市的冷冻柜里的温度是零下18℃ ,由于电力紧缺,供电站准备拉闸五小时,已知停电后温度每小时约上升4℃,问超市的冷冻柜里的食品还能不能得到保鲜作用?
6、观察下面一列数,探究其中的规律:
, , , , ,
(1)填空:第11,12,13个数分别是 , , ;
(2)第2008个数是 ;
(3)如果这列数无限排列下去,与哪个数越来越近?答:
7、M国股民吉姆上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)
星期 一 二 三 四 五 六
每股涨跌 +4 +4.5 –1 –2.5 –6 +2
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价是每股多少元?
(3)已知吉姆买进股票时付了0.15%的手续费,卖出时需付成交额 0.15%的手续费和0.1%的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?
8、”十·一”黄金周期间,省城逍遥津公园风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数): (单位:万人)
日期 1日 2日 3日 4日 5日 6日 7日
人数变化 +1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2
(1) 若9月30日的游客人数记为1万,10月2日的游客人数是多少?
(2) 请判断7天内游客人数最多的是哪天?最少的是哪天?他们相差多少万人?
(3) 求这一次黄金周期间游客在该地总人数.
(4) 以9月30日的游客人数为O点,用折线统计图表示这7天的游客人数变化情况:

1、-1(1/2)的倒数是____,相反数是_______,绝对值是________。

2、用科学记数法记出690000=____________。

3、代数式a2+b2的意义是__________________。

4、0÷(-3)=_______,3.14×(-18.9)×0×(-1)=_________。

5、2.4万精确到_______位,有效数字为_____。

6、数轴上离开原点2个单位长的点所表示的数是____。

7、用代数式表示产量由x千克增长10%,就达到______千克。

8、比较大小:|-3|____π,-2/3____-3/4,0.32____0.33

9、-11比-9大_____,化简-[+(-5)]=______。

10、三个连续整数中间一个为n+1,则其它两个为________。

11、若|x|=0.2,则x=_____,0.0984保留二个有效数字约为______。

12、绝对值小于3的整数有_____________,它们的和为_________,积为________。

13、若2.4682=6.091,则( )2=0.06091。

14、______________的倒数与它平方相等。

15、5-a2有最大值为________。

16、若3是y的倒数,则3y2=_______。

17、1/15与2/15的和的倒数是_______。

18、若|a|+a=0,则a________0。

19、若(2x-1)2+|y-3|=0,则2x-y=______。

20、若a、b互为相反数,c、d互为倒数,|m|=2,则a+b/a+b+c+m2-cd=____。

二、判断题(每题1分,共10分)

1、当n=5时,代数式2n+10的值是20,因此代数式2n+10的值就总是20。( )

2、-5.88是负分数。 ( )

3、所有的有理数都可以用数轴上的点表示。 ( )

4、减去一个数等于加上这个数的相反数。 ( )

5、有理数包括正有理数和负有理数。 ( )

6、己知,x>0,y<0且|x|<|y|则x+y>0。 ( )

7、互为相反数的两个数它们的商一定等于-1。 ( )

8、当n为自然数时,(-1)2n-1+(-1)2n=0。 ( )

9、若|a|=2,|b|=5,且ab>0则a-b=-3。 ( )

10、若x>y,则x2>y2。 ( )

三、选择题(每题2分,共20分)

1、下列各式不是代数式的是( )

A、0 B、3+4=7 C、π D、(a+b)/2

2、具备数轴条件的是( )

A、—┴—┴—┴—→ B、——┴——→ C、—┴—┴—┴— D、—┴——┴—→

-1 0 1 0 -1 0 1 -1 1

3、比较-32与(-23)大小,正确的是( )

A、-32>(-2)3 B、-32=(-2)3 C、-32<(-2)3 D、不能比较

4、-|-a|是一个( )

A、正数 B、负数 C、正数或零 D、负数或零

5、设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a、b、c三数的和为( )

A、-1 B、0 C、1 D、不存在

6、下列命题中,正确的是( )

A、相反数等于本身的数只有0; B、倒数等于本身的数只有1;

C、平方等于本身的数有+1,0,-1; D、绝对值等于本身的数只有0和1。

7、一个有理数和它的相反数的积是( )

A、符号必为正 B、符号必为负 C、一定不大于零 D、一定不小于零

8、有理数a与1/a比较应有( )

A、a>1/a B、a<1/a C、a≠1/a D、a>1时,a>1/a

9、有理数a、b、c在数轴上的对应点如下图所示,下列式子中正确的是( )

———┴———┴—┴——┴————→

c a o b

A、ac<bc B、a+b+c<0 C、a+b+c>0 D、bc>ab

10、下列各式中值必为正数的是( )

A、|a|+|b| B、a2+b2 C、a2+1 C、a

四、计算:(1、2题各3分,3、4、5、6、各4分。共22分)

(1)1/3-1/2-3/4+2/3 (2)-8/9×0.25×(-1/4)÷1/9

(3)99(99/100)×(-100) (4)3×(-2.5)×(-4)+5×(-6)×(-3)2

(5)[-3+(-5+|-4|)×(-3/2)]÷3/2÷(-3/2)3 (6)-14-(1-0.5)×1/3×[2-(-3)2]

五、求代数式的值(每题5分,共10分)

1、当x=-2时,求代数式-(1/2)x2+1/3x-1/6的值。

2、己知:(m+n)/(m-n)=1/3时,求(m-n)/(m+n)-3(m+n)/(m-n)的值。

六、己知:-1<a<0试把a,a的相反数,a的倒数,a的倒数的绝对值,从小到大用"<"号连接起来。(4分

❾ 七年级数学下册人教版新版课本下载

http://m.doc88.com/p-9723783111444.html (道客巴巴)

http://m.shangxueba.com/share/p7526577.html (上学吧)

希望内采纳容

❿ 人教版七年级下数学知识点整理

5.1相交线
1、邻补角与对顶角
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形
顶点
边的关系
大小关系
对顶角
∠1与∠2
有公共顶点
∠1的两边与∠2的两边互为反向延长线
对顶角相等
即∠1=∠2
邻补角
∠3与∠4
有公共顶点
∠3与∠4有一条边公共,另一边互为反向延长线。
∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

热点内容
2017高考数学文 发布:2025-05-15 15:11:48 浏览:817
怎么喝水 发布:2025-05-15 14:52:53 浏览:829
雅本化学公司 发布:2025-05-15 13:44:02 浏览:940
师生问候英文 发布:2025-05-15 12:33:11 浏览:332
教师三年个人发展规划 发布:2025-05-15 08:59:20 浏览:116
校长师德师风情况总结 发布:2025-05-15 07:26:18 浏览:72
科高教育 发布:2025-05-15 04:51:38 浏览:764
人教版二年级语文试卷 发布:2025-05-15 03:39:22 浏览:833
叶开语文 发布:2025-05-15 03:38:08 浏览:879
北京假体隆鼻多少钱 发布:2025-05-15 02:49:41 浏览:117