当前位置:首页 » 语数英语 » 生活中的数学模型

生活中的数学模型

发布时间: 2022-05-21 04:26:28

⑴ 初中数学模型有哪些

新课标
初中数学建模的常见类型
全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。
一、建立“方程(组)”模型
现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决
例1(2007年深圳市中考试题)A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?
解:设甲工程队每周铺设管道x公里,则乙工程队每周铺设管道(x+1)公里。
依题意得:
解得x1=2, x2=-3
经检验x1=2,x2=-3都是原方程的根。
但x2=-3不符合题意,舍去。
∴x+1=3
答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。
二、建立“不等式(组)”模型
现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。
例2 (2007年茂名市中考试题)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:
品名 厂家批发价(元/只) 商场零价(元/只)
篮球 130 160
排球 100 120
(1)该采购员最多可购进篮球多少只?
(2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?
解:(1)该采购员最多可购进篮球x只,则排球为(100-x)只,
依题意得:130x+100(100-x)≤11815
解得x≤60.5
∵x是正整数,∴x=60
答:购进篮球和排球共100只时,该采购员最多可购进篮球60只。
(2)该采购员至少要购进篮球x只,则排球为(100-x)只,
依题意得:30x+20(100-x)≥2580
解得x≥58
由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球平均每天销售40只,
商场可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)
答:采购员至少要购进篮球58只,该商场最多可盈利2600元。
三、建立“函数”模型
函数反映了事物间的广泛联系,揭示了现实世界众多的数量关系及运动规律。现实生活中,诸如最大获利、用料价造、最佳投资、最小成本、方案最优化问题,常可建立函数模型求解。
例3 (2007年贵州贵阳市中考试题)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式。
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式。
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
解:(1)y=90-3(x-50) 化简,得y=-3x+240
(2)w=(x-40)(-3x+240)
=-3x2+360x-9600
(3)w=-3x2+360x-9600
= -3(x-60)2+1125
∵a=-3<0∴抛物线开口向下
当x=60时,w有最大值,又x<60,w随x的增大而增大,
∴当x=55时,w的最大值为1125元,
∴当每箱苹果的销售价为55元时,可以获得最大利润1125元的最大利润
四、建立“几何”模型
几何与人类生活和实际密切相关,诸如测量、航海、建筑、工程定位、道路拱桥设计等涉及一定图形的性质时,常需建立“几何模型,把实际问题转化为几何问题加以解决
例4 (2007年广西壮族自治区南宁市中考试题)如图点P表示广场上的一盏照明灯。
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离;结果精确到0.1米;参考数据:tan55 °≈1.428,sin55°≈0.819,cos55°≈0.574。
解:(1)如图,线段AC是小敏的影子。
(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ。在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3(米)。
∵tan55°=
∴PD=3 tan55°≈4.3(米)
∵DF=QB=1.6米
∴PF=PD+DF=4.3+1.6=5.9(米)。
答:照明灯到地面的距离为5.9米。
五、建立“统计”模型
统计知识在自然科学、经济、人文、管理、工程技术等众多领域有着越来越多的应用。诸如公司招聘、人口统计、各类投标选举等问题,常要将实际问题转化为“统计”模型,利用有关统计知识加以解决。
例5 (2007年后湖北省荆州市中考试题)为了了解全市今年8万名初中毕业生的体育升学考试成绩状况(满分为30分,得分均是整数),从中随机抽取了部分学生的体育生学考试成绩制成下面频数分布直方图(尚不完整),已知第一小组的频率为0.12。回答下列问题:
(1)在这个问题中,总体是 ,样本容量为

(2)第四小组的频率为 ,请补全频数分布直方图。
(3)被抽取的样本的中位数落在第 小组内。
(4)若成绩在24分以上的为“优秀”,请估计今年全市初中毕业生的体育升学考试成绩为“优秀”的人数。
解:(1)8万名初中毕业生的体育升学考试 成绩, =500。
(2)0.26,补图如图所示。
(3)三.
(4)由样本知优秀率为 100%=28%
∴估计8万名初中毕业生的体育升学成绩优秀的人数为28%×80000=22400(人)。
六、建立“概率”模型
概率在社会生活及科学领域中用途非常广泛,诸如游戏公平问题、彩票中奖问题、预测球队胜负等问题,常可建立概率模型求解。
例6 (2007年辽宁省中考试题)四张质地相同的卡片如图所示。将卡片洗匀后,背面朝上放置在桌面上。

⑵ 数学建模能解决生活中什么问题

上面二位说得不完全,比如,在温室人工干预环境中中,为了获得更加准确的气候,荷兰特意开发出了一个数学模型,因此领先世界其他国家。将普通生活中的很多抽象问题具体化,数字化,是我对数学建模的理解。它其实可以用在我们生活的方方面面,特别是大型管理项目,大量数据项目中,更显效率。但是一个好的数学模型是不容易得到的,需要考虑方方面面的因素,分析准确性和评估错误风险,我认为国内在很多方面,做得还是挺失望的。

⑶ 数学模型在生活中有哪些应用

可以毫不夸张的说,数学建模的应用遍及生活的方方面面.比如说投资组合、饲料配方、指派问题、车辆调度、人口预报等等.

⑷ 数学建模在生活中有那些具体的应用

可以毫不夸张的说,数学建模的应用遍及生活的方方面面。比如说投资组合、饲料配方、指派问题、车辆调度、人口预报等等。

⑸ 生活中还有哪些东西和数学建模有关

举一些例子说明:

你如果学计算机搞软件开发,这就是数学建模;如果在工厂搞质量管理,那些通过参数控制,产品质量的,这也是数学建模;推算天气预报的,气象模型,这也是数学建模;宇宙物理学中,对宇宙的各种理论模型也是;把地球看成是个圆也是;等等。

我的理解中的数学模型就是把具体问题抽象化,剔除一些不重要的影响因素,最终能形成一个评价或评判的公式,并对今后的某些情况进行预测,当然预测的准不准和模型的建立有很大的关系,同一个问题从不同角度从手,就会形成不同的公式,代入一些数据后就会有不同的结论。

⑹ 生活中有哪些常见的数学建模

双曲线模型(炼铁高炉,发电厂高炉) 抛物线模型(扔铅球,投炸弹)
数学模型方法是数学学习中通过构建数学模型处理各类问题(包括数学理论和实际应用等方面)的方法。

⑺ 生活中有什么初中模型

常见的模型有雨伞模型、手拉手模型、倍长中线、婆罗摩笈多等。

初中的几何模型较多,从学平行线开始,就有铅笔模型,再到三角形的内角和,又有飞镖模型,然后学全等三角形,又有截长补短、背长中线,后续学四边形、圆、二次函数,还有很多。

初中数学模型五大常考全等模型分别是:平移模型、对称模型、一线三垂直模型、旋转模型、半角模型。

⑻ 谁能举例说说生活中的数学模型有哪些呢

生活中的数学模型
双曲线模型(炼铁高炉,发电厂高炉)
抛物线模型(扔铅球,投炸弹)

⑼ 常见的数学模型有哪些

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

(9)生活中的数学模型扩展阅读

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

⑽ 求急!!!生活中的数学模型!!!有答 必赏!!

我们座的凳子是四条腿,不是3条腿,这样坐着任何一个方向都不会倒。
自行车架和房子的梁做成三角形的,这样更加牢固。
我们烧的煤做成圆形的,不做成方的,这样更方便换煤。
砖头做成四方的不做成六方或圆柱体的,外观更平直。

热点内容
灰雀教学实录 发布:2022-07-07 06:27:25 浏览:311
南美洲有哪些国家 发布:2022-07-07 05:58:16 浏览:560
十一去哪里旅游人少 发布:2022-07-07 05:55:40 浏览:394
哪里订机票 发布:2022-07-07 05:53:25 浏览:334
干露露是哪里人 发布:2022-07-07 05:52:41 浏览:65
西汉的都城在哪里 发布:2022-07-07 05:50:51 浏览:233
破折号有哪些作用 发布:2022-07-07 05:46:02 浏览:821
r是什么牌子车 发布:2022-07-07 05:16:35 浏览:793
心慌是什么原因 发布:2022-07-07 05:02:13 浏览:637
山药怎么做好吃 发布:2022-07-07 02:22:54 浏览:119