当前位置:首页 » 语数英语 » 数学公式

数学公式

发布时间: 2020-11-19 08:03:20

『壹』 高中数学公式大全

1、集合与常用逻辑用语


『贰』 小学数学必背公式大全

长方形的周长=(长+宽)× C=(a+b)×2;正方形的周长=边长×4 C=4a;长方形的面积=长×宽 S=ab;正方形的面积=边长×边长 S=a.a= a;三角形的面积=底×高÷2 S=ah÷2;平行四边形的面积=底×高 S=ah;梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2;直径=半径×2 d=2r 半径=直径÷2 r= d÷2;圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr;圆的面积=圆周率×半径×半径

三角形的面积=底×高÷2. 公式 S= a×h÷2;正方形的面积=边长×边长 公式 S= a×a‘’长方形的面积=长×宽 公式 S= a×b;平行四边形的面积=底×高 公式 S= a×h。

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2;内角和:三角形的内角和=180度.;长方体的体积=长×宽×高 公式:V=abh;长方体(或正方体)的体积=底面积×高 公式:V=abh;正方体的体积=棱长×棱长×棱长 公式:V=aaa;圆的周长=直径×π 公式:L=πd=2πr

(2)数学公式扩展阅读:

从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程。

因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。

『叁』 数学公式有那些

小学数学图形计算公式
1
正方形
C周长
S面积
a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2
正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3
长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
长方体
V:体积
s:面积
a:长
b:

h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5
三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
S面积
C周长

d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
1
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

『肆』 小学数学公式大全

小学数学公式大全
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a×a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr^2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr^2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
二、单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分
1分=60秒 1时=3600秒
三、数量关系计算公式方面
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
五、特殊问题
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数+1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
(1)一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间

『伍』 1到5年级所有的数学公式

三角形的面积=底×高÷2。公式S= a×h÷2

正方形的面积=边长×边长公式S= a×a

长方形的面积=长×宽公式S= a×b

平行四边形的面积=底×高公式S= a×h

梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh

正方体的体积=棱长×棱长×棱长公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式: S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么么叫等式?等号左边的数值与等号右边的数值相等的式子。

(5)数学公式扩展阅读

数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

『陆』 数学公式

1,只有两点在一条直线上的两点

3的最短的补角等于角或等角

4与互补的角度等于角度或等角 5有一点有且仅有一个直线与所有已知直线垂直

6直点用一条线连接,在最短的垂直段

7连胜之外,通过平行公理,有一个小外且只有一个与此

8直线平行如果两条直线是平行的并且在第三行,两条线是相互平行的

9对应角相等,两直线平行

10内角相等,两直线平行

11互补的同一侧的内角,两条直线平行

12两条平行线,相应的角相等

13两条平行线,备用内角都等于

14的两条直线平行互补 15大于第三边

16推论两侧三角形的小于第三边

17角的三角形和三角形3内角定理和等于180°

18推论1急性两个三角形相互予

19推论2三角形并且它不是一个外角等于两个相邻的内角和

20推论3三角形的外角大于1,并且它不对应于任何相邻内角

的21全等两侧三角形,对应角相等

22角落边公理(SAS)都有两面性及其对应的角相等的两个三角形全等

23角边角公理(ASA)有两角和它们的相应的文件夹边相等两个三角形全等

24推论(AAS)具有角部和在对应于两个三角形全等 25边边边公理(SSS)有两个三角形三边全等对应的一个角落等于

26斜边,直角边公理(HL)有斜边和直角等于对应边全等

27定理1从角度的角平分线两侧的两个直角三角形点到等于

28定理2的距离是相同的上的一个角点两侧在这个角度

拐角角的两边的29角平分线的角平分线是等于之间的距离集所有点的

30等腰三角形是等腰三角形定理相等(即等边右视)

31推论1等腰三角形顶点平分线平分底边和垂直于底

32等腰三角形顶点平分底边中间和各重合 33的等边三角形的角推论3是相等的,并且每一个角等于60°

34等腰三角形确定一个三角形有两个定理角相等,则这两个角相等的一侧(右等角等边)

35推论1三个角是相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在一个直角三角形,如果一个锐角,使得它等于30°的直角斜边的中心线的一侧是等于一半/> 38 <br上的斜边等于一半

39分线对斜边垂直平分线定理和本段的两个端点的距离相等

40逆线和一个点的两个端点的距离相等,这样的垂直平分线线段的垂直平分线

41和线段结束点可以从该组/> 42的所有点等于<br上定理1中可以看出,在两个图是对称的,以直线形状全等

43定理2如果两个图形对称的直线,则该对称轴是对应点连线的垂直平分线

44定理3两个图形对称于直线,如果其对应的段或延长线相交,该轴则相交对称

连接的对应点45相反,如果这两个图是同一条直线垂直分割,然后在这条线对称

46勾股定理两直角边三角形的两个图形A,B的和平方等于斜边c中的平方,即^ 2 + B ^ 2 = C ^ 2

47毕达哥拉斯三角形的三条边,如果A,B,钙关系的^ 2 +的逆B ^ 2 = C ^ 2,则该三角形是直角三角形

48定理四边形内角等于360°

49四边形的外角等于360°

50多边形内角和定理n边形的内角等于第(n-2)×180°

51推论任意多边外角等于定理的360°

52平行四边形平行四边形性质1对角线等于

53定理2两条平行线平行线段之间的推论两侧平行四边形平行四边形的性质等于

54夹着等于

定理55平行四边形平行四边形的性质3

56每个对角线平分平行四边形的判定定理1等于两个右四边形的角度是平行四边形平行四边形判断

57定理2组分别在四边形的边是平行四边形等于

58平行四边形判定定理3对角线平分每个四边形是平行四边形

59定理4平行四边形确定一组平行边相等的四边形是平行四边形

60四个矩形矩形性质定理1角的直角

定理2的61矩形性质等于对角线的矩形的矩形判断 62定理1有三个角是直角四边形为长方形

63为矩形的对角线等于判定定理2平行四边形的矩形

64钻石定理一菱形的四个边都相等

65金刚石菱形性质定理2对角线互相垂直,每个对角线平分对角<BR÷2

67钻石四边相等判定定理四边形的钻石是钻石

68 /> 66菱形面积=对角线一半的产品,S =(A×B)确定定理2对角线垂直的平行四边形菱形

69平方定理是成直角的四角方形,四边相等

70平方性质定理2等于两条对角线的平方,和对方垂直分割,每一个对角线平分对角

71定理1关于对称中心的两个图形是全等

72定理2对称中心2图形,对称点连线一直对称中心,并且是对称中心平分

73逆对应的点连接,如果两者都通过一种模式,并且平分

这一点上,两个图形上这点两个对角对称判定定理

74等腰梯形等腰梯形定理的两个角度的同一端是相等的等腰梯形

76等腰梯形等于底部的梯形相同等腰梯形

77的两个相等的角是一个对角相等等腰梯形梯形

平行线平行线78平分定理,如果在交叉

段直线相等,则截获其他直线段相等

79推论通过平行于腰部梯子的底部中点直线,腰部会分裂的另一个推论

中点的80两年后直边与另一侧平行的三角形,将分裂中线第一

平行于三角形的第三边的中线81的三边的三角形定理,并且等于它

位行半梯形

82位并行梯形定理的两端和等于两个,下半部分

L =(A + B)÷2 S = L×高

83的基本性质(1)如果a的比值:B = C:D,则AD = BC

如果AD = BC,则A:B = C:D

84(2)综合成本率如果的性质A / B = C / D,则(a±B)/ B =(C±D)/ D

85(3)如果几何性质的A / B = C / D = ... = M / N(B + D + ... + N≠0),则

(A + C + ... + M)/(B + D + ... + N)= A / B 86是成正比的定理的平行线段3平行线切割得到的两条直线对应

87比例推理直线平行于三角形边切割其他两个侧面(或两个的延长线的两侧),所得到的线是成正比的相应

如果在三角形横截面(或延长线的两侧)的两侧的线得到正比于相应节段88定理,那么这线平行于三角形

平行于三角形边89的第三端,而另外两个侧面相交的直线,其中拦截与三角形的边的三角形的边对应于原始比例 BR /> 90定理平行于三角形,另两边(或延长线的两侧)的直边相交原来

91相似三角形组成的三角形是相似三角形的判定定理相应的角落相等,这两个三角形相似(ASA)

92斜边直角三角形的高度除以在两个直角三角形与原三角形相似

93判定定理2正比于相应的边及角都相等,这两个三角形相似(SAS)

94确定相应的比例三边定理3,两个三角形相似(SSS)

95定理如果一个直角三角形斜边和一个直角边和另一个直角3

和相应比例一个直角三角形斜边,那么这两个直角三角形相似

96相似三角形对应定理1更高的性质比用相应的相应的比较角度平

点线大于等于中线比

97类似性质定理2比等于相似三角形性质类似的圆周比

98定理3相似三角形面积比等于相似广场

99比任何锐角等于其互补的任何锐角的余弦值的角度等的正弦余弦

与其互补的正弦

100急性任意正切余切值相等的角与其互补的任何急性余切等

与其互补的切线

101点的圆弧的角角等于收集固定长度

102的点之间的距离可以看出里面的圆心的距离小于外圆

103的半径的设定点可以被看作是一个距离大于中心点集 104像一个圆或圆

轨道半径等于到固定点的距离等于105固定的长度,被指定为中心,固定长度的半圆直径

/> 106 <br和之间的已知距离点等于垂直线段无线电通信的轨迹线的两个端点的点的轨迹平分线

107从已知的角度距离相等的两边的角平分线

108到两条点的平行线的距离相等,并且这两条平行线的轨迹是平行的,并从/> 109直定理一个

<br距离相等的3点并不在同一直线上,以确定一个圆。

110上下径定理直径垂直于弦的垂线平分弦这与弦的垂线平分 111推论1①平分弦的直径垂直于弦线的(不是直径)和字符串分割两圆弧的垂直平分线

②字符串通过该中心,和两个圆弧

③平分弦平分的垂直分割和弦和和弦的直径的圆弧的弦平分另一个圆弧的 112推论2轮弧两条平行字符串相等

圆的113文件夹的中心是对称中心对称 114定理在同一个圆或等圆,等于圆的角弧等于

相等的弦,从和弦的和弦的中心等于同样的推理

115和圆的圆,或者如果两个圆心角,两个圆弧,2心脏字符串或两个字符串<br然后各组对应的其余量它们相等

116定理的弧角等于圆心角的它的一半的圆周/>弦距离相等量在一组圆周角

117推论1同弧或等离子弧是对等的;和轮在同一圆或推论的弧的相等的圆周角是相等的

118 2半周的一对角(或直径)是直角;为90°至/> 119直径推论3和弦

<br圆周角如果三角形的中性面是等于一半的侧面,那么这个三角形是直角三角形

120定理圆内接四边形对角互补,并且任何外角等于br的br 121①对角线L和⊙ō相交D<R ②⊙ō切线L和D = R

③从L和⊙O D用>研究

122线性相位决定了切线通过半径定理的外端,并垂直于圆相切的切线定理 123垂直于通过相切半径 124推论的圆相切通过中心且垂直于直线的切点会通过削减

125推论2经过切点且垂直于该切线

126将通过该中心从外圆切点定理很长的圆两条切线,它们的外观,如相切,该中心

连接,并且一分为二128西安Qiejiao定理角度

127四边形的切线切圆在边和两个相等

西安Qiejiao等于其弧圈夹一角

129推论如果两个弦切角夹弧相等,那么这两个是相等的弦切角圆定理在两个相交弦弦

130相交,分为两个部分路口长的产品

131扣垂直等于外径,如果该字符串,那么一半的直径字符串是成正比/> 132项削减从外圆点定理

<br的两段引圆的切线和割线,切线长度切断

这一点上的交集两条直线和圆弧段在长期

133比例推理从外循环,导致两回合割线,这是割线绕每个路口等于两条线段长 134如果两个圆相切,然后割断某点与心脏外

线135①从D> R 1 + R②两圆外切D = R + R ③两圆相交的Rr <D R)内

④两圆切削量d = RR(R> R)⑤含有D S两个圆圈)

136定理两个圆相交的垂直中心线甚至共同平分弦两回合

137定理圆为N(N≥3):

⑴点逐一环节所产生的多边形内切圆正n边形

⑵每个点圆切线后到切线相交相邻多边形的顶点是圆外切正n边形

138定理任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆

139每个内部角度一正n边形是相等的(N-2)×180°/ N

140定理n边形的边心距半径和n边形成2n个全等三角形

141正n边形面积的Sn = pnrn / 2个P n边形的周长说

142三角区√3A / 4侧面

143表示,如果有是指日可待了积极的k个顶点n边形,因为这些角度并应 360°,因而K×(N-2)180°/ N = 360°到第(n-2),(K-2)= 4

144弧计算公式:L = N吴R/180 BR /> 145风扇的面积公式:S = N伍机构的研究平方公尺/ 360 = LR / 2

146公切线长度= D-(RR)公切线的长= D-(R 1 + R)
> 147完全平方公式:(A + B)^ 2 = A ^ 2 +2 AB + B ^ 2

(AB)^ 2 = A ^ 2-2AB + B ^ 2

148平方差公式:(A + B)(AB)= A ^ 2-B ^ 2

实用工具:常用数学公式

分类公式公式表达

>因子A2-B2 =(A + B)(AB)A3 + B3 =(A + B)(A2-AB + b2)的A3-B3 =(AB(A2 + AB + b2)的

的乘法

三角不等式| A + B |≤| A | + |客栈| | AB |≤| A | + |客栈| |一|≤b -B≤A≤b

| AB |≥| A | - | B | - | A |≤一个≤| A | />一元二次方程

<br解决方案-B +关系X1√(B2-4AC)/ 2a-b中 - √(B2-4AC)/ 2A

根和+ X2 =-B / A X1 * X2 = C / A注系数:韦达定理判别

B2-4AC = 0注:方程有两个相等的实数根

B2-4AC> 0注意:有两个方程不和其他实根

B2-4AC <0注:方程有没有真正的根,共轭复根

三角函数方程和公式角落

罪(A + B)= sinAcosB + cosAsinB罪(AB)= sinAcosB- sinBcosA

COS(A + B)= cosAcosB-sinAsinB COS(AB)= cosAcosB + sinAsinB

谭(A + B)=(塔纳+ tanB)/(1-tanAtanB)棕褐色(AB)= (TANA-tanB)/(1 + tanAtanB)

CTG(A + B)=(ctgActgB-1)/(ctgB + CTGA)CTG(AB)=(ctgActgB +1)/(ctgB-CTGA) BR p>倍角公式

tan2A = 2tanA /(1-tan2A)ctg2A =(ctg2A-1)/ 2ctga

cos2a = cos2a-sin2a = 2cos2a-1 = 1 - 2sin2a BR p>半角公式

罪(A / 2)=√((1-COSA)/ 2)SIN(A / 2)= - √((1-COSA)/ 2)

COS(A / 2)=√((1 + COSA)/ 2)COS(A / 2)= - √((1 + COSA)/ 2)

TAN(A / 2)= √((1-COSA)/((1 + COSA))TAN(A / 2)= - √((1-COSA)/((1 + COSA))

CTG(A / 2)=√ ((1 + COSA)/((1-COSA))CTG(A / 2)= - √((1 + COSA)/((1 - COSA))

和情节较差 2sinAcosB = SIN(A + B)+罪(AB)2cosAsinB = SIN(A + B)-SIN(AB)

2cosAcosB = COS(A + B)-SIN(AB)-2sinAsinB = COS( A + B)-COS(AB)

新浪+ SINB = 2sin((A + B)/ 2)COS((AB)/ 2 COSA + COSB = 2cos((A + B)/ 2)罪( (AB)/ 2)

塔纳+ tanB = SIN(A + B)/ cosAcosB塔纳-tanB = SIN(AB)/ cosAcosB CTGA + ctgBsin(A + B)/ sinAsinB-CTGA + ctgBsin (A + B)/ sinAsinB

若干列的前n项和

1 +2 +3 +4 +5 +6 +7 +8 +9 + ... + N = N(N +1)/ 2 1 3 5 7 9 11 13 15 + ... +(2n-1个)= N 2

2 4 6 8 + 10 +12 +14 + ... +(2N)= N(N +1)12 +22 +32 +42 +52 +62 +72 +82 + ... + N2 = N(N +1)(2n个+1)/ 6

13 +23 +33 +43 +53 +63 + ... N3 = N2(N +1)2/4 1 * 2 +2 * 3 +3 * 4 +4 * 5 +5 * 6 +6 * 7 + ... + N(N +1)= N(N +1)的一个正弦/新浪= B /(N +2)/ 3

法SINB = C / SINC = 2R注:其中R表示的余弦B2三角形

法的外接圆的半径= A2 + C2-2accosB注:角B是一个侧面之间的角度和c中的侧

的一个圆(XA)的标准方程2 +(YB)2 = R2附注:(a,b)的中心的一般方程坐标

圆的2倍+ Y2 +霉素+ Ey的+ F = 0注:D2 + E2-4F> 0

标准抛物线方程Y2 = 2px的Y2 =-2px的X2 = 2PY X2 =-2PY

直棱边面积S = C * H斜棱柱侧面积S = C'*高

金字塔侧面积S = 1/2C * H'n侧斜面面积S = 1/2(C + C')H'

截头锥体侧面积S = 1/2(C + C')升=圆周率(R 1 + R)升球体表面积S = 4PI * R2

圆柱侧面积S = C * H = 2PI * H锥形侧面积S = 1/2 * C * L = PI * R *升

弧长公式L = A * ra为数r的曲率中心角> 0风扇面积公式S = 1/2 *升* R

锥体体积公式V = 1/3 * S * H 4锥体体积公式V = 1/3 * PI * R2H

斜棱柱体积V = SL'注:式中,S'的直的截面面积,L是侧边缘

气缸容积式V = S * H缸V = PI * R2H
同学你好,如果问题解决了,请赞谢谢哦

『柒』 所有数学公式

1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数×因数=积 积÷一个因数=另一个因数
9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高 面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1= 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
常见的初中数学公式与定理
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
数学公式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h

『捌』 小学数学全部公式

1 、正方形 C:周长 S:面积 a:边长
周长=边长×4 C=4a 面积=边
2 、正方体 V:体积内 L: 棱长容和
(1)棱长和=棱长×12 L=12a
(2)表面积=棱长×棱长×6 S表=a×a×6
(3) 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形 C:周长 S:面积 a:长 b: 宽
周长=(长+宽)×2 C=2(a+b) 面积
4 、长方体 V:体积 s:面积 L: 棱长和 a:长 b: 宽 h:高
(1)棱长和=(长+宽+高)×4 L=4(a+b+h)
(2)表面积=(长×宽+长×高+宽×高)×2 S表
(3)体积=长×宽×高 V=abh
5 、三角形 s:面积 a:底
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形
6、 平行四边形 S:面积 a:底 h:高
面积=底×高 s=ah
7 、梯形 S:面积 a:上底 b:下底 h:高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
梯形高=面积 ×2÷(上底+下底) 梯形上

热点内容
人教版二年级语文试卷 发布:2025-05-15 03:39:22 浏览:833
叶开语文 发布:2025-05-15 03:38:08 浏览:879
北京假体隆鼻多少钱 发布:2025-05-15 02:49:41 浏览:117
年度师德师风自查报告 发布:2025-05-15 02:16:35 浏览:334
是在下输了是什么梗 发布:2025-05-15 01:59:54 浏览:289
教育课 发布:2025-05-15 00:39:16 浏览:887
笔画视频教学 发布:2025-05-15 00:06:14 浏览:99
小班幼儿英语 发布:2025-05-15 00:00:31 浏览:854
思教育网 发布:2025-05-14 22:14:17 浏览:988
师德师纪自查小结 发布:2025-05-14 21:09:36 浏览:534