教师编数学题
1. 有谁参加过相城区的教师招聘考试啊 学科专业知识是考什么的小学数学是奥数还是初中数学题目或其他的
专业知识和教材教法!
可以到 易考试教师招考中心 找找资料。
2. 求小学数学教师招聘笔试的题目集
1、计算题
①1993×19941994+1994×19931993 ②19.58×66+22×91.26
2、一支钢笔能换3支圆珠笔,4支圆珠笔能换7支铅笔,那么4支钢笔能换( )支铅笔。
3、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米。乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于或等于20千米时,两人可用对讲机联络。问:
(1)两人出发后多久可以开始用对讲机联络?
(2)他们用对讲机联络后,经过多长时间相遇?
(3)他们可用对讲机联络多长时间?
4、明年3月1日是星期四,那么明年的国庆节是星期 。
5、有40个连续的自然数,其中最大的数是最小数的4倍,那么最大的数与最小的数之和是________。
6、三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条件数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上______条鱼。
7、如下图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是______。(176)
8、把从1开始的若干个自然数排列成如右上图的形状。那么,第25行左起第2个数是 。
9、星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拔到8:00。然后,小明离家前往天文馆。小明到达天文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中。看到闹钟显示的时间是11:20,请问,这时小明应该把闹钟调到什么时候才是准确的? 时 分
10、张老师的年龄比王兵的年龄的3倍少4岁,张老师在7年前的年龄和王兵9年后的年龄相等。问张老师和王兵各是多少岁?
11、甲、乙两车同时从A、B两地相对开出,4小时后相遇,甲车再行3小时到达B地。已知甲车每小时比乙车每小时快20千米,A、B两地相距多少千米?
12、全班54人去划船游玩,一共乘坐10条船,其中大船每条坐6人,小船每条坐4人,那么大、小船各有多少条?
1. 简便计算:
13 4.36×12+88×4.36
14 14.15+12.04×99-2.11
15 7.1×399.08
16 75×4.67+19.9×2.5
17 2005年1月1日是星期六,这一年的儿童节是星期几?
18 4÷11商的小数点后面第2008位的数字是几?
19 8÷11商的小数点后面135个数字之和是几?
20. 某数的小数点向左移一位,再和这个数相加,得数是17.27。这个数是几?
21. 某数的小数点向右移一位,则数值比原来大86.4,原数是几?
22. 把乘法算式中残缺的数字和积中的小数点补上。
□. □□
×□ 2.□
□ □ □
□□□ □
__□ 8□
□□ 9□ 2 □
23甲、乙、丙三人现在的岁数之和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多少岁?
1 一号楼三家住户一次性存款2700元,李家比王家少存250元,王家比张家多存80元,三家各存多少元?
2 一个笼子能容纳18只同样大的兔子和9只同样大的鸡,或者能容纳14只同样大的兔子和15只同样大的鸡.如果专门用来做兔笼,最多能容纳几只兔子?
3 甲乙丙,甲的年龄比乙的年龄2倍还大3岁,乙的年龄比丙的年龄2倍小2岁,三人年龄之和是109岁,三人各几岁?
4 少先队员一 二 三中队共灭鼠200只,二中队灭鼠只数是一中队两倍多5只,三中队比灭鼠只数比一 二中队之和多4只,三个中队各灭鼠多少只?
^为除号*为乘号
1.解:设王家有存款x元,李家有存款x-250,张家有存款x-80元。
x+(x-250)+(x-80)=2700
3x-330=2700
3x=2700+330
3x=3030
x=1010
x-250=760
x-80=930
答:王家有存款1010元,李家有存款760元,张家有存款930元。
2.解:设笼子大为m,一只兔占空间x,一只鸡占空间y.
m=18x+9y
m=14x+15y
可得:18x+9y=14x+15y
4x=6y
2x=3y
y=2/3x
所以:m=18x+9*2/3x
m=18x+6x
m=24x
答:最多能容24只兔。
3.解:设乙的年龄为x,甲的年龄为2x+3,丙的年龄为(x+2)/2.
x+2x+3+(x+2)/2=109
3x+1/2x+4=109
7/2x=105
7x=210
x=30
2x+3=63
(x+2)/2=16
答:甲63岁,乙30岁,丙16岁。
4.解:设第一中队灭鼠X只,第二中队灭鼠2x+5只,第三中队灭鼠3x+9只。
注意:x+2x+5+4=3x+9!
x+2x+5+3x+9=200
6x+14=200
6x=186
x=31
2x+5=67
3x+9=102
答:第一中队灭鼠31只,第二中队灭鼠67只,第三中队灭鼠102只
5.甲仓存粮108吨,乙仓存粮140吨,要使甲仓的存粮是乙仓的3倍,必须从乙仓运出多少吨放入甲仓?
6.幼儿园的小朋友分糖果,每人分10个糖果,有两个没有分到,如果每个小朋友分8个,正好分完,问多少个小朋友?共有多少个糖果?
7.植树节同学们植树,每人栽6棵还剩4棵,如果其中有3人各栽5棵,其余每人栽7棵,正好栽完,共有几个同学栽树?
5.解;设需要从乙仓运出X吨放入甲仓
3*(140-X)=108+X
X=78
答;设需要从乙仓运出78吨放入甲仓.
6.应该是80个糖果,10个小朋友.
解:设X个小朋友
10*(X-2)=8*X
X=10
所以糖果的个数是8*10=80
7.解:设有X个同学
6*X+4=3*5+7*(X-3)
X=10
南、北镇之间全是小路。某人上山每小时走2千米,下山每小时走5千米。他从南镇到北镇要走38小时,从北镇到南镇要走32小时。问:两镇之间的路程是多少千米?
此人走一个来回需要32+38=70小时
来回所走的上坡路与下坡路距离相等
所以走上坡路用了70/(5+2)*5=50小时
两镇之间路程为50*2=100千米
1、计算题
①1993×19941994+1994×19931993 ②19.58×66+22×91.26
2、一支钢笔能换3支圆珠笔,4支圆珠笔能换7支铅笔,那么4支钢笔能换( )支铅笔。
3、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米。乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于或等于20千米时,两人可用对讲机联络。问:
(1)两人出发后多久可以开始用对讲机联络?
(2)他们用对讲机联络后,经过多长时间相遇?
(3)他们可用对讲机联络多长时间?
4、明年3月1日是星期四,那么明年的国庆节是星期 。
5、有40个连续的自然数,其中最大的数是最小数的4倍,那么最大的数与最小的数之和是________。
6、三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条件数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上______条鱼。
7、如下图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是______。(176)
8、把从1开始的若干个自然数排列成如右上图的形状。那么,第25行左起第2个数是 。
9、星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拔到8:00。然后,小明离家前往天文馆。小明到达天文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中。看到闹钟显示的时间是11:20,请问,这时小明应该把闹钟调到什么时候才是准确的? 时 分
10、张老师的年龄比王兵的年龄的3倍少4岁,张老师在7年前的年龄和王兵9年后的年龄相等。问张老师和王兵各是多少岁?
11、甲、乙两车同时从A、B两地相对开出,4小时后相遇,甲车再行3小时到达B地。已知甲车每小时比乙车每小时快20千米,A、B两地相距多少千米?
12、全班54人去划船游玩,一共乘坐10条船,其中大船每条坐6人,小船每条坐4人,那么大、小船各有多少条?
1. 简便计算:
13 4.36×12+88×4.36
14 14.15+12.04×99-2.11
15 7.1×399.08
16 75×4.67+19.9×2.5
17 2005年1月1日是星期六,这一年的儿童节是星期几?
18 4÷11商的小数点后面第2008位的数字是几?
19 8÷11商的小数点后面135个数字之和是几?
20. 某数的小数点向左移一位,再和这个数相加,得数是17.27。这个数是几?
21. 某数的小数点向右移一位,则数值比原来大86.4,原数是几?
22. 把乘法算式中残缺的数字和积中的小数点补上。
□. □□
×□ 2.□
□ □ □
□□□ □
__□ 8□
□□ 9□ 2 □
23甲、乙、丙三人现在的岁数之和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多少岁
南、北镇之间全是小路。某人上山每小时走2千米,下山每小时走5千米。他从南镇到北镇要走38小时,从北镇到南镇要走32小时。问:两镇之间的路程是多少千米?
此人走一个来回需要32+38=70小时
来回所走的上坡路与下坡路距离相等
所以走上坡路用了70/(5+2)*5=50小时
两镇之间路程为50*2=100千米
1.一列火车长150米,以每秒16米的速度通过一座长1130米的大桥.从车头上桥到车尾离桥要多少时间?(150+1130)/16=80(秒)
2.简算:0.19960乘0.19971997减0.1997乘0.19961996=?
0.19960乘0.19971997减0.1997乘0.19961996=0
是对他平常知识的检验
3. 小学数学教师业务考试试题
小学数学教师业务学习考试试题及答案
一、填空(每空0.5分,共20分)
1、数学是研究( 数量关系 )和( 空间形式 )的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性 )、(普及性 )和(发展性 )。义务教育的数学课程应突出体现(全面 )、(持续 )、(和谐发展 )。
3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展 )。
4、学生是数学学习的(主体),教师是数学学习的( 组织者 )、( 引导者)与(合作者)。
5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数 )、(图形与几何 )、(统计与概率)、( 综合与实践)四大领域;将数学教学目标分为(知识与技能 )、(数学与思考)、(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程。除(接受学习 )外,(动手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、(计算)、推理、(验证)等活动过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的“四基”包括(基础知识 )、(基本技能 )、(基本思想)、( 基本活动经验);“两能”包括(发现问题和提出问题能力)、(分析问题和解决问题的能力)。
8、教学中应当注意正确处理:预设与(生成)的关系、面向全体学生与(关注学生个体差异 )的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学手段多样化)的关系。
二、简答题:(每题5分,共30分)
1、义务教育阶段的数学学习的总体目标是什么?
通过义务教育阶段的数学学习,学生能:(1). 获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验。(2). 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。(3). 了解数学的价值,激发好奇心,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
2、课程标准对解决问题的要求规定为哪四个方面?
(1)初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,发展应用意识和实践能力。(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。(3)学会与他人合作、交流。(4)初步形成评价与反思的意识。
3、“数感”主要表现在哪四个方面?
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
4、课程标准的教学建议有哪六个方面?
(1).数学教学活动要注重课程目标的整体实现;(2).重视学生在学习活动中的主体地位;(3).注重学生对基础知识、基本技能的理解和掌握;(4).引导学生积累数学活动经验、感悟数学思想;(5).关注学生情感态度的发展;(6).教学中应当注意的几个关系:“预设”与“生成”的关系。面向全体学生与关注学生个体差异的关系。合情推理与演绎推理的关系。使用现代信息技术与教学手段多样化的关系。
5、估算有哪三大特点?如何评价估算?
① 估算过程多样 ② 估算方法多样 ③ 估算结果多样
评价:在上述前提下,估算没有对和错之分,但有估算结果与精确计算结果的差异大小之分。
6、可以用哪四种不同的方式确定物体所在的方向和位置?
①上下、前后、左右 ②东、南、西、北、东南、西南、东北、西北 ③数对
④观测点、方向、角度、距离
三、运用课程标准的新理念分析(10分)
下面上《“1——5”的认识》的教学设计中的教学目标,请你依据课程标准对这一内容的教学目标加以简评。
教学目标:
1、使学生会用1——5各数表示物体的个数,知道1——5的数序,能认读1——5各数,建立初步的数感。
2、培养学生初步的观察能力和动手操作能力。
3、体验与同伴互相交流学习的乐趣。
4、让学生感知生活中处处有数学。
简 评:
(1)全面(知识与技能、数学思考、解决问题、情感与态度)。
(2)具体(数量、数序、数感)。
(3)准确(会用、体验、感知)。
(4)突出了学习方式的更新。
四、解答题:(每题4分,共40分)
1、6个好朋友见面,每两人握一次手,一共握( 15次 )手。
2、地面以上1层记作+1层,地面以下1层记作-1层,从+2层下降了9层,所到的这一层应该记作( -8 )层。
3、有一个整数除300,262,205所得的余数相同,则这个整数最大是( 19 )。
4、大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”鸡有( 23 )只,兔有( 12 )只。
5、某小学四、五年级的同学去参观科技展览。346人排成两路纵队,相邻两排前后各相距0.5米,队伍每分钟走65米,现在要过一座长629米的桥,从排头两人上桥至排尾两个离开桥,共需要( 11 )分钟。
6、用绳子三折量水深,水面以上部分绳长13米;如果绳子五折量,则水面以上部分长3米,那么水深是( 12 )米。
7、小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是( 63/8 )分钟。
8、一个合唱队共有50人,暑假期间有一个紧急演出,老师需要尽快通知到每一个队员。如果用打电话的方式,每分钟通知1人。请你设计一个打电话的方案,最少花( 6分钟 )时间就能通知到每个人。
9、口袋里装有42个红球,15个黄球,20个绿球,14个白球,9个黑球。那么至少要摸出( 66 )个球才能保证其中有15个球的颜色是相同的。
10、在统计学中平均数、中位数、众数都可以称为一组数据的代表,下面给出一批数据,请挑选适当的代表。
(1)在一个20人的班级中,他们在某学期出勤的天数是:7人未缺课,6人缺课1天,4人缺课2天,2人缺课3天,1人缺课90天。试确定该班学生该学期的缺课天数。(选取:平均数)
(2)确定你所在班级中同学身高的代表,如果是为了:①体格检查,②服装推销。(①选取:中位数②选取:众数)
(3)一个生产小组有15个工人,每人每天生产某零件数目分别是6,6,7,7,7,8,8,8,8,8,9,11,12,12,18。欲使多数人超额生产,每日生产定额(标准日产量)就为多少?(选取:众数)
4. 小学教师证面试数学的考题,是什么样的
教师资格面试考场里的20分钟,分为三个考试环节。5分钟结构化答辩+10分钟试讲版+5分钟试讲答辩。其中结构权化答辩2道题目,是考官现场读题。有的地方并不会给思考时间,考官读完题目就要求考生直接回答。答辩后直接试讲,很多老师会在剩余2分钟时,提示学生考试时间,10分钟试讲时间严格要求。针对试讲的内容,最后5分钟是自由答辩环节,考官会针对考生的试讲内容,进行随机提问。
小学教师资格证面试数学试讲的考题形式可参看下图备课纸:
更多教师资格面试指导内容您可点击中公教师考试网(http://www.zgjsks.com/)下方导航栏的浙江栏目进行查看。