当前位置:首页 » 语数英语 » 六年数学上册

六年数学上册

发布时间: 2025-09-09 08:33:22

⑴ 六年级上册数学书内容是什么

六年级上册数学书内容是如下:

1、第一章:有理数。

2、第二章:整式的加减。

3、第三章:一元一次方程。

4、第四章:图形认识初步。

5、第五章:相交线与平分线。

6、第六章:平面直角座标系。

7、第七章:三角形。

8、第八章:二元一次方程组。

9、第九章:不等式与不等式组。

10、第十章:资料的收集、整理与描述。

⑵ 六年级上册数学所有公式

小学六年级上册数学计算公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米

数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

⑶ 六年级上册数学书的内容有哪些

六年级数学上册电子课本目录

1分数乘法

2位置与方向(二)

3分数除法

4比

5圆

确定起跑线

6百分数(一)

7扇形统计图

节约用水

8数学广角──数与形

《小学教材全解:6年级数学(上)(人教课标版)》“能力提升”对知识的综合点、延伸点、拓展点进行讲解,重点培养思维的缜密性,解题方法和技巧的多样性,阅读后开发智力,拓展思维,提升创新能力。

本书“考点题库”为学生自主检测准备了科学高效的优化习题,是对教材习题的有效补充:“赛点题库”精选的思维拓展训练题,能够激发潜能,提升能力。

“单元复习”归纳重点知识与巧练考点精题结合,连点成线:“期末复习”分领域进行知识梳理与训练,将知识连线成面,点、线、面交织,形成树状知识体系。

“趣味数学”和“信息窗口”是将关于数学的知识起源、趣闻、趣题、伟大的科学家等课外资料与课内知识有机结合,浏览后可拓宽视野,提高数学素养。

⑷ 六年级数学必背公式是什么

小学六年级上册数学必背公式大全:

一、用字母表示运算定律或性质。

加法交换律:a+b=b+a。

加法结合律:(a+b)+c=a+(b+c)。

乘法交换律:ab=ba。

乘法结合律:(ab)c=a(bc)。

乘法分配律:a(b+c)=ab+ac。

二、几何图形计算公式。

(1)周长:即围绕物体一周的长度。

①长方形周长=(长+宽)×2,C=(a+b)×2。

②正方形周长=边长×4,C=4a。

③圆的周长=圆周率×直径=圆周率×半径×2,C=πd,C =2πr。

(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽,S=ab。

②正方形的面积=边长×边长,S=axa=a2。

③平行四边形的面积=底×高,S=ah。

④三角形的面积=底×高÷2,S=ah÷2。

⑤梯形的面积=(上底+下底)×高÷2,S=(a+b)h÷2。

⑥圆的面积=圆周率×半径,S=πr2。

⑦直径d=2r,径=直径÷2,r= d÷2。

⑧环形面积=外圆面积-内圆面积,S环=S外-S内。

【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R。

(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2,S=2(ab+ah+bh)。

②正方体的表面积=棱长×棱长×6,S=a×a×6=6a2。

③圆柱体的侧面积=底面周长×高,S=Ch=2πrh。

④圆柱体的表面积=侧面积+底面积×2,S=Ch+2πr2= 2πrh+2πr2。

注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h2πr。

(4)体积:物体所占空间的大小叫体积。

①长方体的体积=长×宽×高,V=abh。

②正方体的体积=棱长×棱长×棱长,V=a×a×a=a3。

③圆柱的体积=底面积×高,V=sh=πr2h。

④圆锥的体积=底面积×高÷3,V=1/3sh= 1/3πr2h。

【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh,即底面积×高。等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。

三、数量关系式:

1、每份数×份数=总数。

总数÷每份数=份数。

总数÷份数=每份数。

2 、单价×数量=总价 。

总价÷单价=数量 。

总价÷数量=单价。

3、速度×时间=路程 。

路程÷速度=时间 。

路程÷时间=速度。

4、工效×工时=工作总量 。

工作总量÷工效=工时 。

工作总量÷工时=工效 。

5、 加数+加数=和 。

和-一个加数=另一个加数。

6、 被减数-减数=差 。

被减数-差=减数 。

差+减数=被减数。

7、 因数×因数=积 。

积÷一个因数=另一个因数。

8、 被除数÷除数=商 。

被除数÷商=除数 。

商×除数=被除数 。

被除数=除数×商+余数。

注意:0.3÷0.2=1...0.1,除数与被除数同时扩大100倍,商不变,余数也扩大100倍。

9、 平均数=总数÷总份数 。

平均速度=总路程÷总时间。

10、相遇路程=速度和×相遇时间 。

相遇时间=相遇路程÷速度和 。

速度和=相遇路程÷相遇时间 。

一个人的速度=相遇路程÷相遇时间-另一个人的速度。

11、平均速度=总路程÷(顺流时间+逆流时间)。

注意:折(往)返=路程×2。

12、溶质(药)+溶剂(水)=溶液(药水),溶质(药)÷溶液(药水)=浓度,溶液(药水)×浓度=溶质(药),溶质(药)÷浓度=溶液(药水)。

13、折扣=现价÷原价 (折扣<1) 。

现价=原价×折扣。

原价=现价÷折扣 。

14、利息=本金×年利率×时间(年)=本金×月利率×时间(月)。

税后利息=本金×利率×时间×(1-5%)。

15、比例尺=图上距离÷实际距离。

实际距离=图上距离÷比例尺 。

图上距离=实际距离×比例尺 。

16、追及距离=速度差×追及时间 。

追及时间=追及距离÷速度差 。

速度差=追及距离÷追及时间。

小学六年级下册数学必背公式大全:

负数必背知识点:

1、0既不是正数,也不是负数,它是正数和负数的分界。0大于所有负数,小于所有正数。负数比较大小,不考虑负号,数字大的数反而小。

2、“+”可以省略不写,“-”不能省略。

3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。 0左边的数都是负数,0右边的数都是正数

百分数(二)知识点:

1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折就表示十分之八,就是按原价的80﹪出售。

2、成数:“几成”就是十分之几,也就是百分之几十。三成五就是十分之三点五,也就是35%

3、应纳税额 = 总收入×税率 税率=应纳税额÷总收入 总收入=应纳税额÷税率

4、利息=本金×利率×存期

5、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。

圆、圆柱、圆柱必背公式:

1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2。

2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C÷π。

3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π。

4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=πr2。

5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)2。

6、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。

7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。

8、圆柱的体积等于底面积乘以高,公式 V圆柱=Sh。圆柱的高等于体积除以底面积,公式h=v÷s;圆柱的底面积等于体积除以高,公式s=v÷h。

9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 。圆锥体积公式:V=1 /3Sh。圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。

10、环形的面积=大圆面积-小圆面积,S环 =πR -πr。

11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3。

12、体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。即圆锥的高=圆柱的高×3,圆柱的高=圆锥的高÷3。

比例必背知识点:

1、表示两个比相等的式子叫做比例。如2:1=6:3。

2、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6。

3、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。

4、成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定) 例如:速度一定,路程和时间成正比例,因为:路程÷时间=速度(一定)。

5、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定) 例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

6、图上距离:实际距离=比例尺;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺;

数学广角---鸽巢问题:

1、物体数÷抽屉数=商……余数 至少数=商+1。

2、只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。







⑸ 数学六年级上册公式有哪些

数学六年级上册公式如下:

1、乘法分配律:a(b+c)=ab+ac。

2、因数×因数=积;积÷一个因数=另一个因数。

3、半圆周长=圆周长一半+直径=2(1)×2πr=πr+dw。

4、长方形周长=(长+宽)×2 C=(a+b)×2。

5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)。

⑹ 人教六年级上册数学教学计划

六年级上学期数学教学计划
一、教材分析:
这一册教材内容包括:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
在数与代数方面,教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。会解决简单的有关百分数的实际问题,是小学生应具备的基本数学能力。
在空间与图形方面,教材安排了位置、圆两个单元。通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;初步认识研究曲线图形的基本基本方法,促进学生空间观念的进一步发展。
在统计方面教材是安排扇形统计图。进一步体会统计在生活和解决问题中的作用,发展统计观念。
在数学解决问题方面,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。
教材安排了两个数学综合应用的实践活动,体会探索的乐趣和数学的实际应用,感受数学的愉悦,培养学生的数学应用意识和实践能力。
二、教学目标:
1.理解分数乘除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2.理解倒数的意义,掌握求倒数的方法。
3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题
4、掌握圆的特征,会用圆规画圆;理解圆周率的意义,探索并掌握圆的周长与面积公式,能正确地计算圆的周长与面积。
5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6、能在方格纸上用数对表示位置,初步体会坐标思想。
7、使学生理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8、认识扇形统计图,能根据需要选择合适的统计图表示数据。
9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、养成认真作业、书写整洁的良好习惯。
三、学生情况分析:
六年级1班原有学生37人,现转入1人,共38人。2班38人从去年一年的教学情况来看2班的学习习惯较差,特别是作业习惯的自习习惯,困此必须对其进行培养。两极分化比较严重,因此对学生的关心和思想教育也十分重要。另外大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展.基础知识掌握比较牢固,有一定的学习数学的能力。在课堂上大部分学生能积极主动地参与学习过程,具有一定的观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,但自主探讨能力不高。有相当一部分的学生基础知识差,上课不认真听讲,不能独立完成学习任务,需要老师督促并辅导。还有一部分比较认真但解决问题的能力较差,只能掌握一些基础知识,稍稍拐个弯就不知所措。本学期重点还是抓好学习上有困难的学生教学,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。
四、教学措施:
1、创设愉悦的教学情境,激发学生学习的兴趣。
2、提倡学法的多样性,关注学生的个人体验。
3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。
4、加强基础知识的教学,使学生切实掌握好这些基础知识。
5、学生能预习教材,提出知识重点,自己是通过什么途径理解的,还有哪些疑问。能通过查阅资料找出解决问题的方法。
6、教师作为课堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操作能力和发散思维能力。
7、利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发,自己找出解决问题的方法,体验学习数学的快乐。
8、培养学习数学的兴趣和自信心,使每位学生的能力有所提高。
9、体现学生的主体作用,让学生爱学、会学,教学生掌握学习方法。
10、教学与实践活动相结合因材施教,每一堂课教学内容的设计都根据教学目标和学生的基础上,创建教学的问题情境,属于符合学生认知规律的教学过程。
五、教学进度
一单元:位置…………2课时
二单元:分数乘法
1、分数乘法……………5课时左右
2、解决问题……………4课时左右
3、倒数的认识…………1课时左右
4、整理和复习…………2课时左右
三单元:分数除法
1、分数除法……………5课时左右
2、解决问题……………3课时左右
3、比和比的应用………4课时左右
4、整理和复习…………2课时
四单元:圆
1、认识圆………………3课时左右
2、圆的周长……………2课时左右
3、圆的面积……………2课时左右
4、整理和复习…………1课时
5、确定起跑线…………1课时
五单元:百分数
1、百分数的意义和写法…………2课时左右
2、百分数和分数小数的互化……2课时左右
3、用百分数解决问题……………9课时左右
4、整理和复习……………………2课时
六单元:统计
1、扇形统计图…………1课时
2、合理存款……………1课时
七单元:数学广角………2课时
八单元:总复习………4课时

⑺ 求小学六年级上册的数学概念

人教版小学六年级数学上册概念整理汇总单元一 位置1.找位置:先列后行。格式为:(列,行)。 例如:(a,b)。2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 单元二 分数乘法1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。例如: + + = ×3(b 0)2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 例如:a× ( ×a) = (为了计算简便,能约分的要先约分,然后再乘。)【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】3.整数乘分数;①、分数乘以整数,可以看作是求几个分数相加的和是多少。 例如: ×n= + + 、、、、、、(b 0)②、整数乘以分数,可以看作是求整数的几分之几是多少。例如:n× 的意义是:表示求n的 是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 例如: × = (b、d 0) 【注:为了计算简便,可以先约分再乘】5.乘积是1的两个数叫互为倒数。 例如: × =1,那 和 就是互为倒数。6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】7.一个数(0除外)乘以一个真分数,所得的积小于它本身。8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。9.一个数(0除外)乘以一个带分数,所得的积大于它本身。10.解答分数乘法应用题相关概念:①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。 ③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。单元三 分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。例如: ÷c= × (a、c 0)②整数除以分数等于整数乘以这个分数的倒数。例如:c÷ =c× (a 0)3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。4.两个数相除又叫做两个数的比。5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:a:b= (a是比的前项;b是比的后项; 是比值,比值一般是分数,可以是整数、也可以是小数)6、求比值、化简比的方法:都可以用前项÷后项。例如: : = ÷ (b、d 0)8.比同除法嫌粗比较:比的前项相当于被除数,后项相当于除数,比值相当于商。例如:a:b=a÷b= (b 0)。9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 例如:a:b=a÷b= (b 0)。10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 例如:a:b= a :b = (b 0)11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫皮者腊燃滑做按比例分配。12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。③、一个数(0除外)除以一个带分数,所得的商小于它本身。

16π = 50.24 36π = 113.04 64π = 200.96 96π = 301.44
4π = 12.56 8π = 25.12 25π = 78.5 13、常用平方数结果
112 = 121 122
= 144 132
= 169 142
= 196 152
= 225 162
= 256 172
= 289 182
= 324 192
= 361

第五单元 百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。
2、千分数:表示一个数是另一个数的千分之几。 3、百分数和分数的主要联系与区别:
(1) 联系:都可以表示两个量的倍比关系。 (2) 区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
③、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”
4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化 (一)百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。 2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化

1、百分数化成分数:
先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。 2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。 ② 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(三)常见的分数与小数、百分数之间的互化
21 = 0.5 = 50% 51 = 0.2 = 20% 85
= 0.625 = 62.5% 41 = 0.25 = 25% 52 = 0.4 = 40% 81
= 0.125 = 12.5% 43 = 0.75 = 75% 53 = 0.6 = 60% 83
= 0.375 = 37.5% 161 = 0.0625 = 6.25% 54 = 0.8 = 80% 87
= 0.875 = 87.5% 251 = 0.04 = 4﹪ 252 = 0.08 = 8﹪ 253 = 0.12 = 12﹪ 25
4 = 0.16 = 16﹪ 三、用百分数解决问题 (一)一般应用题
1、常见的百分率的计算方法: ①合格率 =
%100产品总数合格产品数 ②发芽率 = %100种子总数发芽种子数

③出勤率 =
%100总人数出勤人数 ④达标率 = %100学生总人数
达标学生人数

⑤成活率 =
%100总数量成活的数量 ⑥出粉率 = %100出粉物的重量粉的重量

⑦烘干率 =
%100烘干前的重量烘干后的重量 ⑧含水率 = %100烘干前的重量
烘干后的重量
烘干前的重量
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。) 2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题: 数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量×(1分率)=分率对应量
3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答)
(1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量
4、求一个数比另一个数多(少)百分之几的问题:
两个数的相差量÷单位“1”的量 × 100% 或:
① 求多百分之几:(大数÷小数 – 1) × 100% ② 求少百分之几:( 1 - 小数÷大数)× 100%
(二)、折扣
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。
几折就表示十分之几,也就是百分之几十。例如八折=
10
8
=80﹪,六折五=0.65=65﹪ 2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%
几成”就是十分之几,也就是百分之几十。 如:五成表示( )%
“折扣”表示某种商品降价的幅度。 如:75折就表示现价是原价( )%
(三)、纳税
1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳
给国家。
2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。 3、应纳税额:缴纳的税款叫做应纳税额。 4、税率:应纳税额与各种收入的比率叫做税率。 5、应纳税额的计算方法:应纳税额 = 总收入 × 税率
(四)利息
1、存款分为活期、整存整取和零存整取等方法。

13
2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援
国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
3、本金:存入银行的钱叫做本金。
4、利息:取款时银行多支付的钱叫做利息。 5、利率:利息与本金的比值叫做利率。 6、利息的计算公式:利息=本金×利率×时间
7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 8、本息=本金+利息
第六单元 统计
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。 也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角
越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
第七单元 数学广角
一、“鸡兔同笼”问题的特点:
题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
二、“鸡兔同笼”问题的解题方法
1、猜测法
2、假设法
(1) 假如都是兔 (2) 假如都是鸡

(3) 古人“抬脚法”: 解答思路:
假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。关系式: 鸡兔总脚数÷2-鸡兔总数 = 兔的只数; 鸡兔总数 - 兔的只数 = 鸡的只数。

~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力~~
~如还有新的问题,请不要追问的形式发送,另外发问题并向我求助或在追问处发送问题链接地址,答题不易,敬请谅解~~
O(∩_∩)O,记得好评和采纳,互相帮助祝学习进步!

http://wenku..com/link?url=-LEZXiUUkVy9utPUFxiVPdPyNWeo3-2zs8wwJS431rV-5k-yxe 这个网址里的会更整齐一些,祝学习进步!

热点内容
人物有哪些 发布:2025-09-09 12:31:03 浏览:30
铭记历史素材 发布:2025-09-09 11:01:09 浏览:569
小洪拳教学视频完整版 发布:2025-09-09 09:36:51 浏览:839
六年数学上册 发布:2025-09-09 08:33:22 浏览:46
教育教学知识与能力 发布:2025-09-09 04:39:46 浏览:859
与女老师啪啪啪 发布:2025-09-09 02:28:13 浏览:373
传奇生物微商 发布:2025-09-09 02:22:47 浏览:449
我的物理系教授 发布:2025-09-09 02:13:26 浏览:63
2016生物全国卷1 发布:2025-09-09 02:12:19 浏览:322
信阳教育安全平台 发布:2025-09-09 01:41:31 浏览:632