当前位置:首页 » 语数英语 » 初2数学

初2数学

发布时间: 2020-11-19 12:16:25

Ⅰ 初2数学上册知识点

初二数学上册知识点总结
1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等
4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行
10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等
13.两直线平行,内错角相等 14.两直线平行,同旁内角互补
☆定理 三角形两边的和大于第三边 ☆推论 三角形两边的差小于第三边
三角形内角和定理 三角形三个内角的和等于180°
推论:直角三角形的两个锐角互余
推论:三角形的一个外角等于和它不相邻的两个内角的和
推论:三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角( ASA);有两角和它们的夹边对应相等的两个三角形全等
推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
边边边(SSS) 有三边对应相等的两个三角形全等
斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
定理:在角的平分线上的点到这个角的两边的距离相等
定理:到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合
等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)
推论:等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
推论:等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论:三个角都相等的三角形是等边三角形
推论:有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理:关于某条直线对称的两个图形是全等形
定理:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
定理 四边形的内角和等于360°
四边形的外角和等于360°
多边形内角和定理 n边形的内角的和等于(n-2)×180°
推论:任意多边的外角和等于360°
平行四边形性质定理:平行四边形的对角相等
平行四边形性质定理:平行四边形的对边相等
推论 夹在两条平行线间的平行线段相等
平行四边形性质定理3 平行四边形的对角线互相平分
平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
平行四边形判定定理3 对角线互相平分的四边形是平行四边形
平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
矩形性质定理1 矩形的四个角都是直角
学好初二数学的方法:
一、该记的记,该背的背,不要以为理解了就行
数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

Ⅱ 初2数学证明题的技巧和思想

问题一 :教学目的和要求有哪几方面?
(1)要教给学生的基础知识(2)要让学生掌握的基本技能;(3)解决实际问题的能力;(4)个性品质和思想观念。
(1)基础知识
例如:“全等三角形”教学中,应注意讲清全等三角形的概念,课本中是用“重合”这个很形象的语言来描述的,所以学生并不难理解,但往往以对此重视不够,体会不到它的重要性。因为这个概念搞不清楚,为影响到“对应”概念的理解,而“对应”又是不加定义的概念,它在解决三角形,以及相似三角形高中学习集合理论都有直接关系。因此,应该把“全等形”、“对应”这两个概念讲清楚。“全等形”:包括“形相同”、“大小等” 这两个方面,“对应”按顺序找对应边对应角。关键是确定对应顶点。——方法、规律。
例:直线的“倾斜角”内涵包括:“直线向上方向”“X轴的正方向”“最小角”“正角”
Y 所以需引导学生考虑:“一条直线在直角坐标当中的位置是如何
L 确定的?”( )再引入直线的方向如何确定(由下到上)
X 由此产生对“倾角”的需求。

O 一个正确的概念需经过多次反复方能形成,为此,对比在这里
是重要的。(如图一)
对比方法:正误对比,新旧对比,相似对比,导向对比,综合对比等。
(2) 基本技能
技能的解释:技能是在个体身上固定下来的自动化的行动方式,是对一系列行动方式的概括。
通俗地说:是按照一定的程序与步骤来完成的动作,技能包括心智技能(内隐)与动作技能(外显)。
例1:解一元一次方程的一般步骤是:
去分母——去括号——移项——合并同类项——化成最简方程ax=b(a≠0)的形式
——方程两边都除以未知数的系数——得出方程解
例2:平面几何语言是立体几何语言的基础,平面几何入门教学,在进行几何语言表述训练中,关于线段延长线的画法,可以教为学生正确运用下述规范化的几何作图语言:
(1) 延长线段(AB)
(2) 延长线段 (3) 延长 (4) 反向延长线段
例3:立体几何中计算空间的角和距离的问题概略性推理:
构造 计算 结论
空间计算问题 平面问题 平面问题的解 空间问题的解
认定 三角形
[练习1]:概括出“数学归纳法证明”的一般步骤。
(3)基本方法
中学教学的基本方法一般可分为两类:
一类:逻辑思维方法——是研究问题和思考问题的方法。如观察、实验、演绎、归纳、类比、化归、转换、抽象、概括等方法。
另一类:解题方法——是处理某类具体问题的方法。如代入、消元、换元、降次、配方、待定系数、图象、分析、综合、谬、比较、分类、平移、参数、映射等方法。
例如:复数教学中,基本方法是化归法——复数问题转化为实数问题来解决:
代数表示:z=a+bi ——代数问题
复数
三角表示:z= r( )——三角问题
实数问题
问题 几何表示:向量 ——几何问题
复数模的性质
例2立体几何中求棱柱的侧面积的教学中,需要渗透以下教学方法:
直棱柱—矩形
求S棱柱侧是将棱柱的侧面积沿一条侧棱剪开后展现在一个平面上侧棱柱—平行四边形
这里必须讲清:
(1)不展开侧面能否计算直棱柱的侧面积?——只须用不完全归纳法计算若干个矩形面积的和。
(2)为什么要展开侧面积?——运用化归方法,将空间问题转化为平面问题。
(3)为什么能展开?展开后为什么是矩形?——培养学生的推理能力。
斜棱柱应讲清:
(1)课本上证法是什么方法?——不完全归纳法。
(2)能否对斜棱柱的侧面积公式进行推导,转化为直棱柱面积计算公式?——可以,只须通过直截面,将 斜棱柱分成再会两截,然后在拼成一个以直截面为底的直棱柱,便可用S直术S斜,这里又体现了化归思想和多面体中的割补法(平几中,平行四边形面积求得方法的迁移)

[思考1]:中学数学教学大纲对培养学生数学能力的要求是什么?(见大纲)
(1)运算能力
[思考2]:高中阶段的运算能力有哪些方面?又有哪些要求?
要求迅速、正确、合理的完成下列算:
a. 数与式的各种代数运算;初等超越运算;几何运算;分析运算;概率与统计运算等.

[思考3]: “数列中有那些运算要求?
(2)逻辑思维能力
学生的数学能力表现在诸多方面,而思维能力则是学生智力结构的核心。
思维:直觉思维、逻辑思维、非逻辑思维、逻辑思维能力等。
[思考4]:怎样培养学生的逻辑思维能力?
1,在运算能力方面,欲达"正确迅速"目的,就需在各类运算中概括出相应的运算规律,将其归纳为一般形式。
•思想方法 整式乘法
整式积 多项式
因式分解
•思维特点:——它是一咱逆向思维训练,具有发散性思维特征,同时也具有探索性。
•解决因式分解的一般模式
提取公因式
整式积 运用公式 分组分解 多项式

十字相乘
教学要求有不同的层次,知识点也有主次之分。弄清每项具体内容或知识点在整个教材中的地位和作用,才能分清主次、明确重点和难点。
例1:“一元二次方程”
重点和主要内容:求根公式、制列式、根与学数关系
例2:平几中就图形之间的内在联系而言;三角形是基本的图形,其它平面图形都可以转化为三角形来研究。
就应用而言:三角形知识在后继教学和生产实际中也经常用到。
就培养学生逻辑思维能力,推理论证能力而言:三角形一章担负着十分重要的奠基任务——它是平面几何教学的主要重点内容。
例6:立体教学中直线与平面一章为重点内容
线面关系:掌握,会用线面垂直关系判定
▲ 重视学科内部和学科之间的联系
学科内部的新旧衔接:小学与初中,初中与高中,例数的概念(小学与初中)运算律、结合律、交换律、平行概念
特别应重视知识上的“连接点”“间断点”“深化点”的处理。
将代数与几何,三角与立几中应用辅助角解立几问题,可以使数学知识相互渗透,互相促进,培养综合运用数学知识的能力。
点是什么?怎样抓住关键,突出重点,分散难点?教学时应注意什么?
第四,加强知识的应用
如作为等比数列的应用安排了一个近几年与人们日常生活有关的购物分期付款的例题;作为等差数列的应用,在“阅读材料”里介绍了有关储蓄的一些计算;此外在所增加的应用问题里还涉及房屋拆建规划、绕在圆盘上的线的长度等。
5,教学中应注意的几个问题
(1)把握好教学要求
由于本章联系的知识面广,具有知识交汇点的特点,在应试教育的“一步到位”的教育思想的影响下,本章的教学要求很容易拔高,过早地进行针对“高考” 的综合性训练,从而影响了基本内容的学习和加重了学生负担。
事实上,学习是一个不断深化的过程。作为在高一(上)学习的这一章,应致力于打好基础并进行初步的综合训练,在后续的学习中通过对本章内容的不断应用来获得巩固和提高。最后在高三数学总复习时,通过知识的系统梳理和进一步的综合训练使对本章内容的掌握上升到一个新的档次。
为此,本章教学中应特别注意一些容易膨胀的地方。例如在学习数列的递推公式时,不要去搞涉及递推公式变形的论证、计算问题,只要会根据递推公式求出数列的前几项就行了;在研究数列求和问题时,不要涉及过多的技巧;
(2) 有意识地复习和深化初中所学内容
与现行中学课本一样,新课本由于课时较紧等多种原因.在教学内容方面基本上也是直线编排的,对于初中学过的多数知识.在高中没有系统深入学习的机会。而初中内容是学习高中数学的必要基础,因而在学习高中内容时有意识地复习、深化初中内容显得特别重要。本章是高中数学的第三章,距离初中数学较近,与初中数学的联系最广,因而教学中应在沟通初、高中数学方面尽可能多地作一些努力。例如:
在等差数列、等比数列的通项公式和前n项和的公式中,涉及a1、 an、 n、 d、Sn几个量之间的关系,我们常常要通过将公式变形用其中的已知量来表示未知量。在这过程中,应有意识地复习等式的变形,提醒并及时纠正在变形中容易出现的错误。在根据有关公式和已知条件求未知量(比如求某一项时),常常要列出方程或方程组,然后求解。在这过程中,让学生认识我们的问题实际上是解一个方程或方程组,然后分析其中哪些是已知量,有几个末知量,能不能求解,怎样求解。通过这种有意识的分析,不仅复习了解方程和方程组的知识。而且了解了它的应用,培养了用方程或方程组解决问题的意识;
(3) 适当加强本章内容与函数的联系
适当加强这种联系,不仅有利于知识的融汇贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步。比如,学生在此之前接触的函数一般是自变量连续变化的函数,而到本章接触到数列这种自变量离散变化的函数之后,就能进一步理解函数的一般定义,防止了前面内容安排可能产生的学生认识上的负迁移;
本内容与函数的联系涉及以下几个方面。
1.数列概念与函数概念的联系。
相应于数列的函数是一种定义域为正整数集(或它的前n个数组成的有限子集)的函数,它是一种自变量“等距离”地离散取值的函数。从这个意义上看,它丰富了学生所接触的函数概念的范围。
但数列与函数并不能划等号,数列是相应函数的一系列函数值。基于以上联系,数列也可用图象表示,从而可利用图象的直观性来研究数列的性质。数列的通项公式实际上是相应因数的解析表达式。而数列的递推公式也是表示相应函数的一种方式,因为只要给定一个自变量的值n,就可以通过递推公式确定相应的f(n)。这也反过来说明作为一个函数并不一定存在直接表示因变量与自变量关系的解析式。
2.等差数列与一次函数、二次函数的联系。
从等差数列的通项公式可以知道,公差不为零的等差数列的每一项an是关于项数n的一次函数式。于是可以利用一次函数的性质来认识等差数列。例如,根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列。
此外,首项为a1、公差为d的等差数列前n项和的公式可以写为:
即当 时,Sn是n的二次函数式,于是可以运用二次函数的观点和方法来认识求等差数列前n项和的问题。如可以根据二次函数的图象了解Sn的增减变化、极值等情况。
(4)注意培养学生初步综合运用观察、归纳、猜想、证明等方法的能力
综合运用观察、归纳、猜想、证明等方法研究数学,是一种非常重要的学习能力。事实上,在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳方法进行试探,提出猜想;最后采用证明方法(或举反例)来检验所提出的猜想。应该指出,能够充分进行上述研究方法训练的素材在高中数学里并非很多,而在本章里却多次提供了这种训练机会,因而在教学中应该充分利用,不要轻易放过。
() 在符号使用上与国家标准一致
为便于与国际交流,关于量和单位的新国家标准中规定自然数集N={0,l,2.3,……},即自然数从O开始。这与长期以来的习惯用法不同,会使我们感到别扭。但为了不与上述规定抵触,教学中还是要将过去的习惯用法改变过来,称数集{1,2,3,…}为正整数集,并记为N+。

Ⅲ 初二数学主要是学什么

初二数学主要学:分式、反比例函数、勾股定理、四边形、数据分析。其中:

  1. 分式版包括分权式运算和分式方程。

  2. 反比例函数包括实际问题与反比例函数。

  3. 勾股定理包括勾股定理的证明与勾股定理的逆定理。

  4. 四边形包括平行四边形以特殊的平行四边形与梯形。

  5. 数据包括数据代表和数据波动。

(3)初2数学扩展阅读

初二指初中二年级,九年义务教育中的八年级也可叫做初二,初中二年级,八年级。科目为:语文、数学、英语历史地理、政治、生物、物理、体育、音乐(10科)。

九年义务教育中的八年级也可叫做初二,初中二年级,八年级。

科目为:语文、数学、英语、历史、地理、政治、生物、物理、体育、音乐(10科);

浙江等省份为语文、数学、英语、科学(物理、生物、化学部分基础内容)、社会(历史、地理、政治)

Ⅳ 初2数学题,

一个分数为负数,则分子和分母符号不同,即X-3>0且X+2<0,这种情况不成立
或者X-3<0且X+2>0得到-2<X<3

Ⅳ 韩寒曾经在那篇文章上说,数学学到初二就够了

韩寒后来不是发表过“道歉声明”么,你不知道吗?原文如下:我以前在报纸上发表过一篇文章,说数学学到初二就够了,引起了很多数学爱好者的愤怒,有写信的有打电话的,有直接写文章说我这个观点是很偏激的。现在事情过去了这么长时间,经过了我一段时间的社会经历,我重新安静下来好好地思考这个问题,思考的结果是我不得不向他们道歉。当初因为匆忙下笔也没有怎么考虑,导致这句话的确和我现在认识到的真实情况有偏差。我错了!因为,数学其实学到初一就够了。

Ⅵ 初二数学都有哪些知识点

归纳如下:

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)•(a +b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3.将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

(6)初2数学扩展阅读:

概念口诀

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

Ⅶ 初2数学啊啊

1、若三角形ABC的三边a,b,c满足(a-b):(c-b):(a+c)=-7:1:18,问三角形ABC的形状,说明理由。
解:设
a-b=-7k,.........①
c-b=k,...........②
a+c=18k...........③
②-①,得版
c-a=8k
上式与③权式相加,得
2c=26k
c=13k
将c=13k代入③,得:a=5k,
将c=13k代入②,得:b=12k,
由于
a^2+b^2
=(5k)^2+(12k)^2
=25k^2+144k^2
=169k^2
=(13k)^2=c^2
由勾股定理,知,该三角形是直角三角形。
2、设a,b,c分别是三角形ABC的三边长,且(a-b)/b=(b-c)/c=(c-a)/a,猜想三角形ABC的形状,说明理由。
解:设(a-b)/b=(b-c)/c=(c-a)/a=k,则有
a-b=bk
b-c=ck
c-a=ak
以上三式相加,得
ak+bk+ck=0
k(a+b+c)=0
由于a+b+c≠0,所以k=0,则有
a-b=0
b-c=0
c-a=0
可得:a=b=c,
所以该三角形是等边三角形。

Ⅷ 初二数学考试反思200字

时间过得飞快,一眨眼之间开学的第一次月考已经结束了。面对这一张张优而不尖和“绊脚石”似的的分数令我不禁陷入沉思;看看一道道不该错的题目被打上大大的叉时,心底里感到无限地自责……

数学。。。。。分的成绩确实不能让自己满意。数学是开学以来主攻的科目,时间精力的投入收到了一定效果,但是细节与知识的结合还有漏洞,在以前没有养成良好的学习习惯,对概念的模糊,都在这份数学试卷中暴露了。压轴题上不去,细节还扣分,这样高不成低不就的学习是必须要摒弃的。学习知识就要新旧结合,同时还要锻炼思维的严谨性,把知识点学透不能摸棱两个。只有把只是学透了,思维才能得到充分的发散。还有一些完全是粗心造成的,使那本该属于我的分数离我而去。
学习必须循序渐进。只有地基打牢固了,高楼大厦才不会倾斜;只有走稳了,才会轻松地跑。学习任何知识,必须注重基本训练,要一步一个脚印,由易到难,扎扎实实地练好基本功,不要前面的内容没有学懂,就急着去学习后面的知识;更不能基本的习题没有做好,就一味去钻偏题、难题。这是十分有害的。
在今后的学习生活中,仍然有一段很长的路要走,良好的学习习惯是成功的保障。我的目标就是在所有考试中不丢让自己觉得遗憾的分。学习而不思考,等于吃饭不消化,我相信对于学习中的问题,有了好的学习态度,在经过自己的思考和总结一定会提升自己的学习质量。

Ⅸ 初2数学题,


满意请采纳

Ⅹ 初2数学下册全部知识点

初二数学下知识点总结
平移与旋转
旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
旋转的性质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
中心对称的性质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对
称图形,这条直线叫做对称轴。
轴对称图形的性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
图形变换
图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)
4.
正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

热点内容
云南白药膏多少钱 发布:2025-05-11 12:53:15 浏览:566
师德师风演讲稿标题 发布:2025-05-11 11:22:34 浏览:520
小小的船优秀教学设计 发布:2025-05-11 11:06:30 浏览:240
老师的眼作文 发布:2025-05-11 10:38:52 浏览:803
扩大英语 发布:2025-05-11 09:48:26 浏览:473
在线教育美国 发布:2025-05-11 08:07:13 浏览:899
教育培训广告设计 发布:2025-05-11 08:07:13 浏览:894
小学语文教育教学论文 发布:2025-05-11 06:32:22 浏览:221
占有女老师 发布:2025-05-11 06:11:24 浏览:979
小学师德自查材料 发布:2025-05-11 05:04:18 浏览:634