初一数学上册期末试题
❶ 初一数学上册期末试卷及答案
一、选择题(每小题1分,共10分)
1. 下列关于单项式 的说法正确的是( )
A. 系数是3,次数是2 B. 系数是 次数是2
C. 系数是 ,次数是3 D. 系数是- ,次数是3
2. 下列事件中,不确定事件的个数为 ( )
①若x是有理数,则
②丹丹每小时可以走20千米
③从一副扑克牌中任意抽取一张,这张扑克牌是大王。
④从装有9个红球和1个白球的口袋中任意摸出一个球,这个球是红球
A. 1个 B. 2个 C. 3个 D. 4个
3. 要把人类送上火星,还有许多航天技术问题需要解决,如:已知一个成年人平均每年呼吸氧气6.57× 升,而目前飞船飞往火星来回一趟需2年时间,如果飞船上有3名宇航员,那么来回一趟理论上需要氧气( )克,(氧气是1.43克/升,结果用科学记数法表示,保留三位有效数字)
A. B. C. D.
4. 钝角三角形的三条高所在直线的交点在( )
A. 三角形内 B. 三角形外 C. 三角形边上 D. 不能确定
5. 下列不能用平方差公式计算的是( )
A. B.
C. D.
6. 在西部山区有位希望中学的学生站在镜子面前,那么他的校徽在镜子里的成像是( )
7. 小马虎在下面的计算中,只做对了一道题,他做对的题目是( )
A. B.
C. D.
8. 在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为( )
A. 80° B. 50° C. 100° D. 130°
9. 如下的四个图中,∠1与∠2是同位角的有( )
① ② ③ ④
A. ②③ B. ①②③ C. ①②④ D. ①
10. 一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系用图像表示为( )
二、填空题(每小题2分,共20分)
1. 多项式 有( )项,次数为( )次.
2. 下列数据是近似数的有( )。(填序号)
①小红班上有15个男生:
②珠穆朗玛峰高出海平面8844.43米。
③联合国2001年2月27日曾发表了一项人口报告,说今后5年内全球预计有1550万人死于艾滋病,现在看来不止这个数目。
④玲玲的身高为1.60米。
3. 观察下面的平面图形,其中是轴对称图形的是( )。(填序号)
4. 一个均匀小立方体的6个面上分别标有数字1,2,3,4,5,6,任意掷出这个小立方体,则掷出数字是3的倍数的概率是( )。
5. 如图,扇形OAB的半径为10,当扇形圆心角的度数变化时,扇形的面积也随之变化,在这个变化过程中,自变量是( ),因变量是( )。
6. 一个圆的半径为r,另一个圆的半径是这个圆的半径的5倍,这两个圆的周长之和是( )。
7. 有长度为2厘米,6厘米,8厘米,9厘米的四条线段,选择其中三条组成三角形,有( )种组成方法。
8. 如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,如果∠EOF= ∠AOD,
则∠EOF=( )度。
9. 如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=70°,∠C=40°,则
∠DAE=( )度,∠AEC=( )度.
10. 如图是小明用火柴搭的1条、2条、3条“金鱼” ,按此规律,则搭第n条“金鱼”时需要火柴( )根。(第一条鱼用了8根火柴)。
三、(每题7分,共14分)
1. 计算:
2. 先化简,在求值:
,其中
四、(第1题6分,第2题8分,共14分)
1. 如图,在由小正方形组成的L形图形中,请你用三种不同方法分别在下面图形中添画一个小正方形使它成为轴对称图形。
2. 如图,是经专家论证得出来的某市新开发的海港2007-2011年的港口吞吐量规划统计图。
(1)(4分)看图,简述该港五年规划的特征:(写出两点即可)
(2)(4分)海港开发将有力拉动该市的经济发展,如果每万吨吞吐量能给该市带来10万元的收入,按规划五年内海港共给该市财政增加多少亿元的收入?
五、(第1题7分,第2题8分,共15分)
1. 小东找来一张挂历画包数学课本。已知课本长a厘米,宽b厘米,厚c厘米,小东想在包课本的封面与封底时,书皮每一边都折进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?
2. 下图是某厂一年的收入变化图,根据图像回答,在这一年中:
①(4分)什么时候收入最高?什么时候收入最低?最高收入和最低收入各是多少?
②(1分)6月份的收入是多少?
③(1分)哪个月的收入为400万元?
④(1分)哪段时间收入不断增加?
⑤(1分)哪段时间收入不断减少?
六、(8分)如图,已知∠1+∠2=180°,∠A=∠C,试说明AF‖CE
七、(8分)甲、乙两人想利用转盘游戏来决定谁在今天值日。如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,若指针指向红色区域,则甲值日,否则,乙值日。此游戏对甲乙双方公平吗?为什么?
八、(11分)如图1,2,四边形ABCD是正方形(AD=AB,∠A=90°,∠ABC=∠CBM=90°)M是AB延长线上的一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
(1)(9分)当点E在AB边的中点位置如图1时,连接点E与AD边的中点N,试说明NE=BF;
(2)(2分)当点E在AB边的任意位置如图2时,N在线段AD的什么位置时,NE=BF?不必说明理由。
图1 图2
【试题答案】
一、选择题
1. D 2 . B 3. C 4. B 5. C 6. B 7. D 8. D 9. C 10. B
二、填空题
1. 4 4 2. ②③④ 3. ①②③
4. 5. 扇形圆心角的度数 扇形的面积
6. 7. 2 8. 30°
9. 15 105 10. 8+6(n-1)
三、
1. -1
2. 原式= ,当a=-1,b=-2时,原式= -16
四、
1.
2. (1)吞吐量逐年增加,起始三年增长速度慢,后两年增长速度较快,2011年吞吐量是2007年的3倍。
(2)16亿元。
五、
1.
2. (1)12月份最高,收入500万元,8月份收入最低,收入100万元。
(2)200万元
(3)1月份
(4)8月——12月
(5)1月——8月。
六、因为 ∠1+∠2=180°
所以DC‖AB
所以∠A=∠FDC
又因为∠A=∠C
所以∠FDC=∠C
所以AF‖CE
七、公平。 ,
八、(1)因为∠NDE+∠AED=90°, ∠BEF+∠AED=90°
所以∠NDE=∠BEF
因为BF平分∠CBM
所以∠EBF=90°+45°=135°,
因为AN=AE
所以∠ANE=∠AEN=45°
∠DNE=180°-∠ANE=135°
所以∠EBF=∠DNE
又DN=EB
所以△DNE≌△EBF
所以NE=BF
(2)当DN=EB时。
❷ 初一数学上册期末试题
七年级上期期末数学模拟测试
一、耐心填一填(每小题3分,共30分)
1.-3和-8在数轴上所对应两点的距离为_________.
2.将图中所示几何图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则应剪去的正方形是_________.
3.平方为0.81的数是________,立方得-64的数是_________.
4.在学校“文明学生”表彰会上,6名获奖者每位都相互握手祝贺,则他们一共握了______次手,若是n位获奖者,则他们一共握了_____次手.
5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有________个交点.
6.太阳的半径为696000 000米,用科学记数法表示为___________米.
7.袋中装有5个红球,6个白球,10个黑球,事先选择要摸的颜色,若摸到的球的颜色与事先选择的一样,则获胜,否则就失败.为了尽可能获胜,你事先应选择的颜色是_________.
8.当x=_______时,代数式2x+8与代数式5x-4的值相等.
9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,则这种服装每件的成本价________元.
10.代数式3a+2的实际意义是_________.
二、精心选一选(每小题3分,共30分)
11.绝对值小于101所有整数的和是( )
(A)0 (B)100 (C)5050 (D)200
12.数轴上表示整数的点为整点,某数轴上的单位长度是1厘米,若在这个数轴上随意放一根长为2005厘米的木条AB,则木条AB盖住的整点的个数为( )
(A)2003或2004 (B)2004或2005
(C)2005或2006 (D)2006或2007
13.如图,某种细胞经过30分钟便由1个分裂成2个,若这种细胞由1个分裂成16个,那么这个过程要经过( )
(A)1.5小时; (B)2小时;(C)3小时;(D)4小时
14.用一个平面去截一个几何体,截面不可能是三角形的是( )
(A)五棱柱 (B)四棱柱 (C)圆锥 (D)圆柱
15.用火柴棒按下图中的方式搭图形,则搭第n个图形需火柴棒的根数为( )
(A)5n (B)4n+1 (C)4n (D)5n-1
16.在直线上顺次取A、B、C三点,使得AB=9cm,BC=4cm,如果点O是线段AC的中点,则OB的长为( )
(A)2.5cm (B)1.5cm (C)3.5cm (D)5cm
17.当分针指向12,时针这时恰好与分针成120°角,此时是( )
(A)9点钟 (B)8点钟 (C)4点钟 (D)8点钟或4点钟
18.如果你有100万张扑克牌,每张牌的厚度是一样的,都是0.5毫米,将这些牌整齐地叠放起来,大约相当于每层高5米的楼房层数( )
(A)10层 (B)20层 (C)100层 (D)1000层
19.在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是( )
(A)抽到大王的可能性与抽到红桃3的可能性是一样的
(B)抽到黑桃A的可能性比抽到大王的可能性大
(C)抽到A的可能性与抽到K的可能性一样的
(D)抽到A的可能性比抽到小王的大
20.小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的税率为20%,则一年期储蓄的利率为( )
(A)2.25% (B)4.5% (C)22.5% (D)45%
三、用心想一想(每小题10分,共60分)
21.利用方格纸画图:
(1)在下边的方格纸中,过C点画CD‖AB,过C点画CE⊥AB于E;
(2)以CF为一边,画正方形CFGH,若每个小格的面积是1cm2,则正方形CFGH的面积是多少?
22.如图,这是一个由小正方体搭成的几何体的俯视图,小正方形的数字表示在该位置的小立方体的个数,请画出主视图和左视图.
23.某食品厂从生产的食品罐头中,抽出20听检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如下表:
与标准质量的
偏差(单位:克) -10 -5 0 +5 +10 +15
听数 4 2 4 7 2 1
问这批罐头的平均质量比标准质量多还是少?相差多少克?
24.声音在空气中传播的速度(简称音速)与气温有一定关系,下表列出了一组不同气温时的音速:
气温(℃) 0 5 10 15 20
音速(米/秒) 331 334 337 340 343
(1)设气温为x℃,用含x的代数式表示音速;
(2)若气温18℃时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地的距离是多少(光速很大,光从燃放地到人眼的时间小得忽略不计)?
25.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负).
星期 一 二 三 四 五
收入的变化值
(与前一天比较) +10 -5 -3 +6 -2
(1)算出星期五该小店的收入情况;
(2)算出该小店这五天平均收入多少元?
(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.
26.列方程解应用题:某地规定:种粮的农户均按每亩产量750斤,每公斤售价1.1元来计算每亩的农产值,年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业附加税”(“农业附加税”主要用于村级组织的正常运转需要).
①去年该地农业税的税率为7%,王大爷一家种了10亩水稻,则他应上缴农业税和农业附加税共多少元?
②今年,国家为了减轻农民负担鼓励种粮,降低了农业税的税率,并且每亩水蹈由国家直接补贴20元(抵缴税款).王大爷今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可比去年少缴497元.”请你求出今年该地区的农业税的税率是多少?
参考答案
一、1.5 2.1或2或6 3.±0.9,-4 4.15, n(n+1) 5.10,1 6.6.96×108 7.黑色 8.4 9.125 10.略(只要符合实际即可)
二、11.A 12.C 13.B 14.D 15.B 16.A 17.D 18.C 19.B 20.A
三、21.(1)略;(2)图略,面积为10cm2.
22.
23.[-10×4+(-5)×2+0×4+5×7+10×2+15×1]÷20=1(克).
答:这批罐头质量的平均质量比标准质量多,多1克.
24.(1)音速为: x+331(米/秒);
(2)当x=18时, x+331=341.8, 341.8×5=1709(米).
所以此人与燃放烟花所在地距离是1709米.
25.(1)20+10-5-3+6-2=26(元);
(2)(30+25+22+28+26)÷5=26.2(元);
(3)画折线统计图(略).
正确结论例:这五天中收入最高的是星期一为30元.
26.①10×750×1.1×7%(1+20%)=693(元);
②设今年农业税的税率为x%,则
10×750×1.1×x%(1+20%)-10×20=693-497.
解之,得x=4.
期末训练
选择题
1、如果一个数的平方等于它的倒数,那么这个数一定是( )
A、1 B、-1 C、0 D、1或-1
2、下列结论中正确的是( )
A、若a≠b,则a2≠b2 B、若a>b,则a2>b2 C、若a>b,则 D、若a2=b2,则a=b或a=-b
3、下列说话中错误的是( )
A、近似数0.8与0.80表示的意义不同 B、近似数0.2000有四个有效数字
C、4.450×104是精确到十位的近似数 D、49554精确到万位为4.9×104
4、方程|x-1|=2的解是( )
A、-1 B、-1或3 C、3 D、1或-2
5、下列调查适合用普查的方式的是( )
A、某工厂制造一种刻度尺,需要检查这批刻度尺的长度是否合格
B、为考查本班学生的体重情况
C、了解一台冰箱每小时的用电量
D、某市有2万名学生参加中考,为了了解这些学生的数学成绩;
6如图,甲、乙、丙、丁四位同学分别坐在一方桌的四个不同的方向上,看到桌面上的图案呈“A”种形状的是( )
A、甲 B、乙 C、丙 D、丁
7、一个骰子由1~6六个数字组成,请你根据图中A、B、C
三种状态所显示的数字,推出“?”处的数字是( )
A、6 B、3 C、1 D、2
8、一个玻璃球从点A被弹出,向左滚动3米碰到墙壁,被方向弹回5米后停止运动,则此时玻璃球在点A的( )
A、左边2米 B、右边2米 C、左边8米 D、右边8米
9、若点从是线段AB的中点,则下列结论错误的是( )
A、AC=BC B、AC= AB C、AB=2BC D、AC=2AB
10、∠A的补角与∠A的余角互补,那么2∠A是( )
A、锐角 B、直角 C、钝角 D、以上三种都可能
一、 填空题(每空1分,共30分)
1.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.绝对值大于1而不大于3的整数有 ,它们的和是 。
3.有理数-3,0,20,-1.25,1 , - ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。
4.观察下面一列数,根据规律写出横线上的数,
- ; ;- ; ; ; ;……;第2003个数是 。
5. 的倒数是 , 的相反数是 , 的绝对值是 ,
已知|a|=4,那么a= 。
6.比较大小:(1)-2 +6 ; (2) 0 -1.8 ;(3) _____
7.最小的正整数是_____;绝对值最小的有理数是_____。绝对值等于3的数是______。
绝对值等于本身的数是
8.直接写出答案(1)(-2.8)+(+1.9)= ,(2) = ,
(3) ,(4)
9.A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则 地势最高,_____地势最低,地势最高的与地势最低的相差______米。
10.某地一周内每天的最高气温与最低气温记录如下表:
星期 一 二 三 四 五 六 日
最高气温 10℃ 12℃ 11℃ 9℃ 7℃ 5℃ 7℃
最低气温 2℃ 1℃ 0℃ -1℃ -4℃ -5℃ -5℃
则温差最大的一天是星期_____;温差最小的一天是星期_______。
二、 选择题(每题2分,共20分)
1.下列说法不正确的是 ( )
A.0既不是正数,也不是负数 B.1是绝对值最小的数
C.一个有理数不是整数就是分数 D.0的绝对值是0
2. 的相反数是 ( )
A. B. C. D.2
3.下列交换加数的位置的变形中,正确的是( )
A、 B、
C、 D、
4.下列说法中正确的是 ( )
A.最小的整数是0 B. 互为相反数的两个数的绝对值相等
C. 有理数分为正数和负数 D. 如果两个数的绝对值相等,那么这两个数相等
5.绝对值大于2且小于5的所有整数的和是 ( )
A.7 B.-7 C.0 D.5
6.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( )
A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
7.计算: 的结果是 ( )
A、2 B、10 C、 D、
8.若 、 互为相反数, 、 互为倒数, 的绝对值为2,
则代数式 的值为 ( )
A、 B、3 C、 D、3或
9.下列式子中,正确的是( )
A.∣-5∣ =5 B.-∣-5∣ = 5 C.∣-0.5∣ = D.-∣- ∣ =
*10.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )
A.3 B.4 C.5 D.6
三、 判断题(每题1分,共10分)
1.- 一定大于- 。 ( )
2.数a的倒数是 。 ( )
3.整数分为正整数和负整数。 ( )
4.有理数的绝对值一定比0大。 ( )
5. 3a-2的相反数是-3a-2 。 ( )
6.若 ,则 等于-2a。 ( )
7.绝对值大于它本身的数是负数。 ( )
8.若a<0,b<0,则a+b=- 。 ( )
9.绝对值小于2的整数有3个。 ( )
10.绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把绝对值较大的加数减去绝对值较小的加数。 ( )
三、画出数轴,在数轴上表示下列各数,并用"<"连接:(4分)
, , , , , ,
三、计算题(每题5分,共30分)
1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:
3.计算:-4.27+3.8-0.73+1.2 4.计算:(1-1 - + )×(-24)
5. + -4.8 6.33.1-10.7-(-22.9)-
四.应用题
1.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17.
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(4分)
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?(4分)
以下为附加题,可选做,所得分作为附加分,不计入总分.
五.探索规律
将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
❸ 七年级上册数学期末试卷及答案
2008-2009学年度第一学期七年级期末数学试卷
(考试时间为100分钟,试卷满分为100分)
班级__________ 学号___________ 姓名___________ 分数____________
一、选择题(每题3分,共36分)
1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
①相反数等于本身的数只有0; ②倒数等于本身的数只有1;
③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;
A.只有③ B. ①和② C.只有① D. ③和④
3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )
A.437℃ B.183℃ C.-437℃ D.-183℃
4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )
A.5.475*10^11 B. 5.475*10^10
C. 0.547*10^11 D. 5.475*10^8
5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )
A.这两个加数的符号都是正的 B.这两个加数的符号都是负的
C.这两个加数的符号不能相同 D.这两个加数的符号不能确定
7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )
A.1个 B.2个 C.3个 D.4个
8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。
A.4x+3y B.2x-y C.-2x+y D.7x-5y
9.下列方程中,解是-1/2的是()
A.x-2=2-x B.2.5x=1.5-0.5x C.x/2-1/4=-5/4 D.x-1=3x
11.甲乙两要相距 m千米,原计划火车每小时行x 千米,若每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )小时。
A. m/50 B. m/x C. m/x-m/50 D. m/50-m/x
12.我们平常的数都是十进制数,如2639=2*10^3+6*10^2+3*10+9 ,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只有两个数码0和1.如二进制数 101=1*2^+0*2^1+1=5,故二进制的101等于十进制的数5,那么二进制的110111等于十进制的数( )
A.55 B.56 C.57 D.58
二、填空题(每小题2分,共16分)
13.大于-2 而小于1的整数有________ 。
14.若一个数的平方是9,则这个数的立方是________。
15.计算:10+(-2)*(-5)^2=_________ 。
16.近似数2.47万是精确到了_________ 位,有________个效数字。
17.若代数式 2x-6与-0.5 互为倒数,则x=______ 。
18.若2*a^3n 与 -3*a^9之和仍为一个单项式,则a=_______ 。
四、列方程解应用题(共13分)
29.(本题4分)甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.
30.(本题4分)青藏铁路的通车是几代中国人的愿望.在这条铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是每小时100千米,在非冻土地段的行驶速度可以达到每小时120千米,在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段约多用O.77小时.如果通过非冻土地段需要 t小时,
(1)用含有 t的代数式表示非冻土地段比冻土地段长多少千米?
(2)若格尔木到拉萨路段的铁路全长是1118千米,求t (精确到O.O1)及冻土地段的长(精确到个位).
31.(本题5分)某年级利用暑假组织学生外出旅游,有10名家长代表随团出行,甲旅行社说:“如果10名家长代表都买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括10名家长代表在内,全部按票价的6折(即按全标的60%收费)优惠”,若全票价为40元,
(1)如果学生人数为30人,旅行社收费多少元?如果学生人数为70人,旅行社收费多少元?
(2)当学生人数为多少时,两家旅行社的收费一样?
(3)选择哪个旅行社更省钱?
五、探究题(共3分)
32.设a,b,c为有理数,在有理数的乘法运算中,满足;
(1)交换律 a*b=b*a;(2)对加法的分配律(a+b)*c=a*c+b*c 。
现对a&b 这种运算作如下定义: a&b=a*b+a+b
试讨论:该运算是否满足(1)交换律?(2)对加法的分配律?通过计算说明。
六、附加题(共6分,记入总分,但总分不超过100分。)
33.(本题3分)证明:1/3<=1/(1*3)+1/(3*5)+------+1/[(2n-1)*(2n+1)] <1/2,(n 为正整数)。
34.(本题3分)
关于 x的方程 ||x-2|-1|=a有三个整数解,求 a的值。
说明:由于原卷中大部分数字和字母都使用了公式编辑器,所以无法显示,我对部分题目做了修改,有的题目实在不好打了,我就删掉了,还请见谅。