当前位置:首页 » 语数英语 » 初一数学习题

初一数学习题

发布时间: 2020-11-19 16:20:30

A. 初一数学期末试题

期末训练
选择题
1、如果一个数的平方等于它的倒数,那么这个数一定是( D)
A、1 B、-1 C、0 D、1或-1
2、下列结论中正确的是( D)
A、若a≠b,则a2≠b2 B、若a>b,则a2>b2 C、若a>b,则 D、若a2=b2,则a=b或a=-b
3、下列说话中错误的是(C )
A、近似数0.8与0.80表示的意义不同 B、近似数0.2000有四个有效数字
C、4.450×104是精确到十位的近似数 D、49554精确到万位为4.9×104
4、方程|x-1|=2的解是( B)
A、-1 B、-1或3 C、3 D、1或-2
5、下列调查适合用普查的方式的是( A)
A、某工厂制造一种刻度尺,需要检查这批刻度尺的长度是否合格
B、为考查本班学生的体重情况
C、了解一台冰箱每小时的用电量
D、某市有2万名学生参加中考,为了了解这些学生的数学成绩;
6如图,甲、乙、丙、丁四位同学分别坐在一方桌的四个不同的方向上,看到桌面上的图案呈“A”种形状的是(很遗憾,我没看到所谓的图 )
A、甲 B、乙 C、丙 D、丁
7、一个骰子由1~6六个数字组成,请你根据图中A、B、C
三种状态所显示的数字,推出“?”处的数字是(没看到图 )
A、6 B、3 C、1 D、2
8、一个玻璃球从点A被弹出,向左滚动3米碰到墙壁,被方向弹回5米后停止运动,则此时玻璃球在点A的( B)
A、左边2米 B、右边2米 C、左边8米 D、右边8米
9、若点从是线段AB的中点,则下列结论错误的是(BD都错,是否你打错答案了.正确的是AC=(1/2)AB )
A、AC=BC B、AC= AB C、AB=2BC D、AC=2AB
10、∠A的补角与∠A的余角互补,那么2∠A是( B)
A、锐角 B、直角 C、钝角 D、以上三种都可能

B. 初一数学趣味题的题目附答案

哥哥和弟弟去买了很多草莓,路上哥哥吃了2个,弟弟吃了5个。回家后,弟弟对爸爸妈妈说:“我在路上已经吃了4个,哥哥吃了2个。现在我们把剩下的草莓四个人平分。但是我特别喜欢吃草莓,所以我总共吃的数目要比哥哥多两倍!”爸爸妈妈答应了。但哥哥想了一会,说“不行!依你这样分的话,爸爸妈妈就吃不到草莓了!”这是为什么

答案:
设平均分的每份是X
则X+4=2(X+2),X=0
所以爸爸妈妈就吃不到了.

至于为什么不是X+5...因为弟弟撒谎就是要按照X+4来分,才会多分点

有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?(也要有过程)
有一水库,在单位时间内有一定量的水流进,同时也向外放水.按现在的放水量,水库中的水可使用40天.因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天.问:如果按照原来的放水量放水,可使用多少天?(当然也要有过程) 2 答案:

3次
第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗"可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品.

20天
设水库原有水为X,每天放出水a,放进水b,则根据题意可得: X=40(a-b) X=40(1.1a-1.2b) (两者同时成立) 所以解得 X=20a 即可以不进水只放20天.

1.有人编写了一个程序, 从1开始, 交替做乘法或加法, (第一次可以是加法,也可以是乘法), 每次加法, 将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3, 例如30, 可以这样得到: 1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2

解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2

2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人?
巍巍古寺在云中,不知寺内多少僧。
三百六十四只碗,看看用尽不差争。
三人共食一只碗,四人共吃一碗羹。
请问先生明算者,算来寺内几多僧?

解答:三人共食一只碗:则吃饭时一人用三分之一个碗,
四人共吃一碗羹:则吃羹时一人用四分之一个碗,
两项合计,则每人用1/3+1/4=7/12个碗,
设共有和尚X人,依题意得:
7/12X=364
解之得,X=624

3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?

解答:设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得:y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。

5.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?

解答:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

6. 数学家维纳的年龄:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少?

解答:设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

解答:663

8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少?

解答:根据题意有(90+2X)(40+2X)*72%=90*40
(90+2X)(40+2X)=3600/0.72
3600+180X+80X+4X2=5000
4X2+260X-1400=0
(4X-20)(X+70)=0
得 4x-20=0 X+70=0
4*x=20 X=5
X=-70 不成立
所以X=5CM

9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数

解答:等量关系:
白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数
设:有白色皮块x
3x=5(32-x)
解得 x=20

10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双?

解答:3

11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”
他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗?

解答:小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜与B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。”
小赵的话说明 D队败
小钱的话说明 B队败
小孙的话说明 D队败
小李的话说明 A队败
所以,C队胜利

12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形?
如果一定能构成或一定不能构成,请证明
如果不一定能够,请举例说明.

解答:可以。
不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b>c;
这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。

13.有一位农民遇见魔鬼,魔鬼说:"我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。

解答:设最初钱数为x
2[2(2x-a)-a]-a=0
解方程得x=7a/8

14.三个同学放学回家,途中见到一辆黄色汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗

解答:四位数可以表示成
a×1000+a×100+b×10+b
=a×1100+b×11
=11×(a×100+b)
因为a×100+b必须被11整除,所以a+b=11,带入上式得
四位数=11×(a×100+(11-a))
=11×(a×99+11)
=11×11×(9a+1)
只要9a+1是完全平方数就行了。
由a=2、3、4、5、6、7、8、9验证得,
9a+1=19、28、27、46、55、64、73。
所以只有a=7一个解;b=4。
因此四位数是7744=11^2×8^2=88×88

15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......
<1>仿照上例,计算1加2加3加5加7加...加99等于?
<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。

解答:<1>1+3+5+...+99=50的平方
<2>1+3+5+...+n=[(n-1)/2+1]的平方

16.有一次,一只猫抓了20只老鼠,排成一列。猫宣布了它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。如此重复,最后剩下的一只老鼠将被放生。一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了!
你知道这只聪明的小老鼠站的是第几个位置吗?

解答:排在第16个。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。

17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)

解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100
=1-1/100
=99/100
备注:1/(1*2*3)=1-1/2-1/3

18.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?

解答:第一题:设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的。
第二题:因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84
第一式解出X=14
第二式结果不为整数
所以只能是7月14号到家

19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

解答:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x
甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4

20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?

解答: 设水库总水量为x 一天的进水量和出水量分别为m和n
则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)]
可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天

21.某宾馆先把甲乙两种空调的温度设订为1度,结果甲种空调比乙种空调每天多节电27度再对乙种空调进行清洗设备,使得乙种空调每天的总节电量是只将温度调高1度后的节电量的1.1倍而甲种空调的节电量不变这样两种空调每天共节电405度求只将温度条调高1度后两种空调每天共节电多少度?

解答:设只将温度调高1度后,甲乙两种空调每天各节电X,Y度
X-Y=27,
X+1.1Y=405
X=207
Y=180
甲乙两种空调每天各节电207,180度.

22.红棉村有1000公顷荒山,绿化率达80%,300公顷良田不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉村所有土地的绿化率就达到60%,河坡地共有多少公顷?

解答:(x*20%+1000*80%)/(1000+300+x)=60%
(0.2*x+800)/(1300+x)=0.6
0.2*x+800=780+0.6*x
x=50公顷

23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5千米.
小明说,如果将这张纸裁成两等份,把裁成两等份的纸摞起来,再裁两等份,如果重复下去,所有纸的高度大于月球到地球的距离.
小刚说,我不信小明的说法.
小明的说法是对的吗?为什么?

解答:裁40次就高于3.85*10^5千米
2^40*0.06/100000=6.597*10^5千米
小明的说法是对,只是这张纸一定要够大,要不能裁了几次就裁不了

24.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?

解答:3次
第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗"可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品

25.埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15表示2/5,用1/4+1/7+1/28来表示3/7等等,现在用90个埃及分子1/2,1/3,1/4,1/5,......。1/90。1/91,其中是否再10个数,加上正负号后使它们的和为-1,若存在,请写出这10个数,若不存在,请说明理由。

解答:一解:
-1=-1/5-1/6-1/8-1/9-1/10-1/12-1/15-1/18-1/20-1/24
二解:
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10=1-1/10
所以:
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/10=1
即:
-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72-1/90-1/10=-1

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
答案:663
已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......
<1>仿照上例,计算1加2加3加5加7加...加99等于?
<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。

<1>1+3+5+...+99=50的平方
<2>1+3+5+...+n=[(n-1)/2+1]的平方

C. 谁能给我100道初一数学练习题

七年级上数学有理数单元检测试题( 1.1~1.4)
(满分120分,完卷90分钟)

班级 学号 姓名 成绩

一、 填空题:(每空2分,共42分)
1、如果运进货物30吨记作+30吨,那么运出50吨记作 ;
2、3的相反数是_____ , ______ 的相反数是
3、既不是正数也不是负数的数是 ;
4.-2的倒数是 , 绝对值等于5的数是 ;
5、计算:-3+1= ; ; ;
; ;
6、根据语句列式计算: ⑴-6加上-3与2的积 ,
⑵-2与3的和除以-3 ;
7、比较大小: ; +| | ;
8、.按某种规律填写适当的数字在横线上
1,- , ,- , ,
9、绝对值大于1而小于4 的整数有 ,其和为 ,积为 ;
10.规定图形 表示运算a-b+c,图形 表示运算 .
则 + =_______

二、 选择题(每题3分,共30分)
11、 已知室内温度为3℃,室外温度为 ℃,则室内温度比室外温度高( )
(A) 6℃ (B) -6℃ (C) 0℃ (D) 3℃
12、下列各对数中,互为相反数的是 ( )
A. 与 B. 与
C. 与 D. 与
13、下列各图中,是数轴的是 ( )
A. B.
-1 0 1 1
C. D.
-1 0 1 -1 0 1

14. 对下列各式计算结果的符号判断正确的一个是 ( )
A、 B、
C、 D、
15.一个数的倒数等于这个数本身,这个数是 ( )
(A)1 (B) (C)1或 (D)0
16.下列各计算题中,结果是零的是( )
(A) (B)
(C) (D)
17. 已知a 、 b 互为相反数, 则 ( )
(A) a – b = 0 (B) a + b = 0 (C) a = (D) a - |b| = 0
18.数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是( )
A.-5+(-2) B、-5-(-2)
C、|-5+(-2)| D、|-2-(-5)|
19. 下列说法正确的是 ( )
(A)一个数的绝对值一定是正数 (B)任何正数一定大于它的倒数
(C)-a一定是负数 (D)零与任何一个数相乘,其积一定是零
20. 如图是一个正方形盒的展开图,若在其中的三个正方形A、B、C 、内分别填入适当的数,使得它们折成正方形后相对的面上的两个数互为相反数,则 填入正方形A、B、C内的三个数依次为( )

(A) 1, -2, 0 (B) 0, -2, 1
(C) -2, 0, 1 (D) -2, 1, 0

21. 计算下列各题: (每小题5分,共20分)
(1) (2) 12—(—18)+(—7)—15

(3) (4) -2 +|5-8|+24÷(-3)

22、(4分)把下列各数填在相应的表示集合的大括号里:

(1)正整数集合{ …}
(2)整数集合 { …}
(3)正分数集合{ …}
(4)负分数集合{ …}

23、在数轴上表示下列各数,再用“<”号把各数连接起来。(5分)
+2,—(+4),+(—1),|—3|,—1.5

24、 (7分)“十•一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
日期 1日 2日 3日 4日 5日 6日 7日
人数变化单位:万人 1.6 0.8 0.4 -0.4 -0.8 0.2 -1.2
(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?
(2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?

25、(6分)若有理数a,b,c在数轴上的位置如图所示,其中0是原点,
|b|=|c|。

(1)用“<”号把a,b,-a,-b连接起来;
(2)b+c的值是多少?
(3)判断a+b与a+c的符号。

26、设a是绝对值大于1而小于5的所有整数的和,b是不大于2的非负整数的和,求a、b,以及b—a的值。(6分)

27、(附加题5分)有一个“猜成语”的电子游戏,其规则是:参加游戏的每两个一组,主持人出示写有成语的一块牌子给两个中的一个人(甲)看,但另一个人(乙)是看不到牌子上的成语的。现在请甲用一句话(这句话中不能出现成语中含有的字)或一个动作告诉牌子上的成语,要求乙根据甲的话或动作猜出这个成语。现在我们把这个游戏中的成语改写两个整数“-1和1”,要求甲用一句话或一个式子、一个图形告诉乙这两个数(同样不能出现与牌子上相同的数字)。如果你是甲,对这两个整数,将怎样告诉乙?(至少说出两种)

D. 初一数学应用题60题

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元

这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。

解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

2.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!

二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?

2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数

(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?

(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。

3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。

解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?

(2)解一元一次方程步骤有那些?

4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)

5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?

答案:
1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150

E. 初一上册数学练习题

1.如果向东运动5m记作+5m,那么向西运动3m应记作 m。
2.既不是正数,也不是负数的数是 。
3.―(―3)的相反数是 ;―1的倒数是 。
4.如果a<0,则 |a|= 。
5.单项式- 的系数是 ,次数是 。
6.若|a+3|+(b-2)2 = 0,则a-b = 。
7.如图1:AB<AC+BC,其理由是 。
8.69°30′的余角等于 。
9.0.02079保留三个有效数字约为 。
10.单项式- x2my与 x6yn的和是一个单项式,则m = ,n = 。
11.把多项式a4+4a3b-6ab2+4ab3按b的降幂排列为 。
12.把一根木条钉在墙上,至少要钉 个钉子,根据 。
13.按科学记数法,把15800000写成 。
14.如图2:∠1=∠2,则 ‖ ,∠BAD+ =180°。

F. 谁有初一数学题练习题 越多越好 带答案

第六章 平面直角坐标系

一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.)
1.某同学的座位号为( ),那么该同学的位置是( )
(A)第2排第4列 (B)第4排第2列 (C)第2列第4排 (D)不好确定
2.下列各点中,在第二象限的点是( )
(A)(2,3) (B)(2,-3) (C)(-2,-3) (D)(-2,3)
3.若 轴上的点 到 轴的距离为3,则点 的坐标为( )
¬ (A)(3,0)¬ (B)(0,3)¬ (C)(3,0)或(-3,0) (D)(0,3)或(0,-3)
4.点 ( , )在 轴上,则点 坐标为( ).
(A)(0,-4) (B)(4,0) (C)(-2,0) (D)(0,-2)
5.点C在 轴上方, 轴左侧,距离 轴2个单位长度,距离 轴3个单位长度,则点C的坐标为( )
(A)( ) (B)( ) (C)( ) (D)( )
6.如果点 (5, )在第四象限,则 的取值范围是( )
¬ (A) (B) (C) (D)
7.如图:正方形ABCD中点A和点C的坐标分别为 和 ,则点B和点D的坐标分别为( ).
(A) 和 (B) 和
(C) 和 (D) 和
8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )
¬ (A)(2,2)¬ (B)(3,2)¬ (C)(3,3)¬ (D)(2,3)
9.线段AB两端点坐标分别为A( ),B( ),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为( )
(A)A1( ),B1( ) (B)A1( ), B1(0,5)
(C)A1( ) B1(-8,1) (D)A1( ) B1( )
10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为( ).
(A)(-2,-5) (B)(-2,5) (C)(2,-5) (D)(2,5)
二、填空:(本大题共有8小题,每题3分,共24分.)
11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.
12. 若点P( , )在第二象限,则点Q( , )在第_______象限.
13. 若点P到 轴的距离是12,到 轴的距离是15,那么P点坐标可以是________(写出一个即可).
14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.
15. 已知点 ( , )在第四象限,且| |=3,| |=5,则点 的坐标是______.
16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),若“象”再走一步,试写出下一步它可能走到的位置的坐标________.

17.如下图,小强告诉小华图中A、B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标________.
18.已知点 的坐标( , ),且点 到两坐标轴的距离相等,则点 的坐标是 .

三、解答题(本大题共4小题,每小题10分,共40分.)
19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.

20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。
⑴看图案像什么?
⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?

21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼, 从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.

22. 已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.

四、思考题(本大题共有2小题,每小题13分,共26分. )
23. 请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:

你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)

24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.

参考答案
1.D;2.D; 3.C;4.C;5.C;6.A;7.B;8.B;9.C;10.A;11.(5,2);12.三;13.(15,12)或(15,-12)或(-15,12)或(-15,-12);14. (-1,3),(1,3);15.(3,-5);16.(3,2),(3,-2),(-1,2),(-1,-2);17.(-1,7);18.(3,3)或(6,-6);19. 答案不唯一.如图: 火车站(0,0),宾馆(2,2),市场(4,3),超市(2,-3),医院(-2,-2),文化宫(-3,1),体育场(-4,3).

20.(1)“鱼”;(2)向左平移2个单位.
21.略;
22.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则C(0,3),D(3,3),E(3,0).

又因为O(0,0),A(1,3),B(3,1), 所以OC=3,AC=1,OE=3,BE=1.
AD=DC-AC=3-1=2, BD=DE-BE=3-1=2. 则四边形OCDE的面积为3×3=9,
△ACO和△BEO的面积都为 ×3×1= , △ABD的面积为 ×2×2=2,
所以△ABO的面积为9-2× -2=4.
23.这些点在同一直线上,在二四象限的角平分线上,举例略.
24.答案不唯一,略.

G. 初一下册数学练习题

1、已知方程5x+m=-2的解是x=1,则m的值为 。
2、已知(3m-1)x 2 n + 1 + 9 = 0是关于x的一元一次方程,则m、n应满足的条件为m ,
n = 。
3、当x的值为-3时,代数式-3x 2 +a x-7的值是-25,则当x=-1时,这个代数式的值为 。
4、方程2x + y = 5的正整数解为 。
5、已知方程组 的解也是方程3x-2y = 0的解,则k = 。
6、若(2x-y)2与 互为相反数,则(x-y)2005 = 。
7、如图是“文杰超市”中某洗发水的价格标签,那么这种洗发水的原价是 。

7题 15题
8、有一个二位数,十位数字与个位数字之和等于9,且十位数字比个位数字的3倍大1,则此二位数为 。
9、国家规定:存款利息税 = 利息×20%,银行一年定期储蓄的年利率为1.98%。小明有一笔一年期存款,如果到期后全取出,可取回1219元。若小明的这笔存款是x元,根据题意,可列方程为 。
10、一个三角形的周长为15cm,且其中的两条边都等于第三边的2倍,则这个三角形中最短边的长为 cm。
11、等腰三角形的两边长分别为12cm和7cm,则它 的第三边的长为 cm。
12、如图,∠A=280,∠B=420,∠DFE=1300,则∠C= 度。
13、已知三角形的周长是偶数,三边分别为2、3、x,则x的值为。
14在各个内角都相等的多边形中,一个内角是一个外角的4倍,这个多边形的每一个内角 的度数为 ,这个多边形的边数为 。
15、工人师傅在做完门框后.为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做根据的数学道理是.
二、精心选一选:(每题3分,共15分)
16、下列说法正确的是( )
A.一元一次方程一定只有一个解;B. 二元一次方程x+y=2有无数解;
C.方程2x=3x没有解; D. 方程中未知数的值就是方程的解。
17、下列说法中错误的是( )
A.三角形的中线、角平分线、高线都是线段;
B.任意三角形的外角和都是3600;
C.三角形按边分可分为不等边三角形和等腰三角形;
D.三角形的一个外角大于任何一个内角。
18、在△ABC中,∠A-∠B = 900,则△ABC为( )三角形。
A.锐角三角形;B. 直角三角形;C. 钝角三角形;D. 无法确定。
19、某商品涨价20%后欲恢复原价,则必须下降的百分数约为( )
A.17%;B. 18%;C. 19% ;D. 20%。
20、已知x+4y-3z=0,且4x-5y+2z=0,则x:y:z 为( )
A.1:2:3;B. 1:3:2;C. 2:1:3;D. 3:1:2
三、细心算一算:
21、解下列方程(组):(每题5分,共20分)
(1) ;(2) 3x + .

(3) (4)

四、用心想一想:(合计31分)
22、(本题6分)如图,△ABC中,D、E分别是BC、AB边上的点, AD平分∠EDC,试说明∠BED>∠B的道理。


23、(本题8分)甲、乙两人分别从A、B两地到C地,甲从A地到C地需3小时,乙从B地到C地需2小时40分,已知A、C两地间距离比B、C两地间距离远10千米,甲比乙每小时多走3千米。
(1) 求A、C两地间的距离。
(2) 假设AC、BC、AB这三条道路均为直的,试判定A、B两地间距离d的取值范围.


24.(本题8分)学校为了提高绿化品位,美化环境,准备将一块周长为76m的长方形草地,设计分成长和宽分别相等的9块小长方形,(放置位置如图所示),种上各种花卉。经市场预测,绿化每平方米造价约为108元。
(1)求出每一个小长方形的长和宽。
(2)请计算完成这项绿化工程预计投入资金多少元?

H. 初一数学练习题

综合题:1.某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人则有一间没有住满人,试求该班宿舍间数及住宿人数?

2.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时,爸爸的脚仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果小宝和妈妈的脚着地。猜猜小宝的体重约有多少千克?(精确到1千克)

3.已知某工厂现有70米,52米的两种布料。现计划用这两种布料生产A、B两种型号的时装共80套,已知做一套A、B型号的时装所需的布料如下表所示,利用现有原料,工厂能否完成任务?若能,有几种生产方案?请你设计出来。
70米 52米
A 0.6米 0.9米
B 1.1米 0.4米

4.用若干辆载重量为七吨的汽车运一批货物,若每辆汽车只装4吨,则剩下10吨货物,若每辆汽车装满7吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?

5.已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米;做一套N型号时装需A种布料1.1米,B种布料0.4米;若设生产N型号的时装套数为X,用这批布料生产这两种型号的时装有几种方案

最佳答案:解:设有x间房,y人。
则有4x+20=y........1
8x-8<y<8x......2
由上述二式得8x-8<4x+20<8x
解得x=6,y=44

解:设小宝体重为x千克。
则有2x+x<72
2x+x+6>72
由上述两式可得22<x<24
所以x=23

解:设A产品x套,B产品套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以能完成任务x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40;

解:设有x辆汽车,y顿货物。
则有4x+10=y
7x-7<y<7x
有上述两式得10/3<=x<=17/3
所以x=4,5
所以有四辆或五辆汽车。

解:设M时装x套,N时装y套。
则有x+y=80
0.6x+1.1y<=70
0.9x+0.4y<=52
有上述三式得36<=x<=40
所以x=36,37,38,39,40
所以x=36,y=44;x=37,y=43;x=38,y=42;x=39,y=41;x=40,y=40

I. 100道初一数学题及答案

我只能给你这么多,电脑放不下太多的.
1、某工厂甲、乙、丙三个工人每天所生产的机器零件数是:甲和乙的比是3:4,乙和丙的比是5:6,若乙每天生产的件数比甲和丙两人的和少931件,问每个工人每天生产多少件?
2、已知初一(1)与初一(2)班各有44人,各有一些学生参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加的人数的1/3,(2)班参加天文小组的人数是(1)班没有参加的人数的1/4,问两个班参加的人数各是多少?
3.某几关有三个部门,A部门有84人,B部门有56人,C 部门有60人。如果每个部门按照相同的比例裁减
人员,使这个几关留下150人。求 C 部门留下的人数是多少?
4.某车间有60名工人,生产某种配套产品,该产品由一个螺栓赔两个螺母而成。每个工人每天平均生产螺栓14个或螺母20个。应该分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套?
一元一次方程的应用测试题(B卷)

一、填空题(每小题3分,共18分)
1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.
(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;
(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.
2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.
3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.
4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.
5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.
6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.

二、选择题(每小题3分,共24分)
7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是
A.20 B.33 C.45 D.54
8.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么
A.甲比乙更优惠 B.乙比甲更优惠
C.甲与乙同等优惠 D.哪家更优惠要看原价
9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为
A.(x+y)千米/小时 B.(x-y)千米/小时
C.(x+2y)千米/小时 D.(2x+y)千米/小时
10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是
A.a米 B.(a+60)米 C.60a米 D. 米
11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为
A.1-( + )m B.5- m
C. m D.以上都不对
12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为
A.x-1=5(1.5x) B.3x+1=50(1.5x)
C.3x-1= (1.5x) D.180x+1=150(1.5x)
13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为
A.a元 B.1.08a元 C.0.972a元 D.0.96a元
14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为
全月应纳税金额 税率(%)
不超过500元 5
超过500元到2000元 10
超过2000元至5000元 15
…… ……

A.1900元 B.1200元 C.1600元 D.1050元

三、简答题(共58分)
15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.
(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.
(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.
(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).
(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.
16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?

17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.

18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.

19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.

参考答案
一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5+3 10 5.36 6.66
二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C
三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.6 (5)大 圆
四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=5
17.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.
18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:
100+ (x-100)=200+ 〔x-200-100- ·(x-100)〕,也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的 ”也是最后一个班级的树苗数的 ,由最后两班的树苗相等,可得方程:
100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得 =100,还可以设每班级取树苗x棵,得 =100.
19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6·(36-x)=100-27.60,
解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.
20.略

热点内容
笔画视频教学 发布:2025-05-15 00:06:14 浏览:99
小班幼儿英语 发布:2025-05-15 00:00:31 浏览:854
思教育网 发布:2025-05-14 22:14:17 浏览:988
师德师纪自查小结 发布:2025-05-14 21:09:36 浏览:534
中学英语下载 发布:2025-05-14 20:01:44 浏览:498
小苹果舞蹈教学儿童版 发布:2025-05-14 18:06:07 浏览:916
高三语文卷 发布:2025-05-14 17:40:03 浏览:761
五年级上册语文达标卷 发布:2025-05-14 16:38:37 浏览:871
邓矮的历史 发布:2025-05-14 15:03:50 浏览:621
中小学师德总结 发布:2025-05-14 14:47:39 浏览:720