初中数学中考复习
中考数学还是要讲究一定的方法,一般复习数学主要分三轮。第一轮复习要梳理初中数学各章节内容,全面复习中考考点。同时根据考试说明熟悉中考题型。第二轮要进行专项的复习,突出重点,突破难题、易错题。第三轮复习重点是查漏补缺,同时要进行考试技巧训练。其实很多人说数学复习不要一味的刷题,其实刷题也是有一定的作用,但是要讲究方法,比如说你哪一个知识点不会,就可以多练习一些有关的习题,我是比较笨的,记得我中考前数学成绩不好,就和大多数人一样去上了补习班,老师主要是教我解题的思路很清晰,经过在卓越教育一个学期的补习,我的数学成绩有了很大提高,去年也顺利考上了中山市第一中学。以我个人来说,要想数学成绩考得好,一定要弄懂解题思路。
『贰』 初中数学中考重点是什么
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.
『叁』 中考数学怎么复习
多做题,题目做的越多你的见识就越广,应对难题时心里就会有把握,还有如果你基础不好的话,一定切记要努力搞好自己的基础,不然怎么努力都是没用的``数学:
一、复习方式
分三轮复习。第一轮复习为基础知识的单元、章节复习。通过第一轮的复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。我们从双基入手,紧扣中考知识点来组织单元过关。结合学生的实际情况,我们实行严格的单元过关,对C层和B层的部分学生实行勤查、多问、多反复的方式巩固基础知识,在知识灵活化的基础上,还注重了培养学生阅读理解、分析问题、解决问题的能力。
第二轮复习打破章节界限实行大单元、小综合、专题式复习。第二轮复习绝不是第一轮复习的压缩,而是一个知识点综合、巩固、完善、提高的过程。复习的主要任务及目标是:完成各部分知识的条理、归纳、糅合,使各部分知识成为一个有机的整体,力求实现基础知识重点化,重点知识网络化,网络知识题型化,题型设计生活化。在这一轮复习中,要以数学思想、方法为主线,学生的综合训练为主体,减少重复,突出重点。在数学的应用方面,注意数学知识与生活、与其他学科知识的融合,穿插专题复习(如图表信息专题、经济决策专题、开放性问题、方案设计型问题、探索性问题等),向学生渗透题型生活化的意识,以此提高学生对阅读理解题的理解能力。
第三轮复习是知识、能力深化巩固的阶段,复习资料的组织以中考题及模拟题为主,回扣教材,查缺补漏,进行强化训练。同时,要教给学生一些必备的应试技巧和方法,使学生有足够的自信从容地面对中考。由于考前的学习较为紧张,往往有部分学生易焦虑、浮躁,导致学习效率下降,在此阶段还应注意对学生的心态及时作出调整,使他们能以最佳的心态参加中考。
中考数学复习黄金方案
打好基础提高能力初三复习时间紧、任务重,在短短的时间内,
如何提高复习的效率和质量,是每位初三学生所关心的。为此,我谈
一些自己的想法,供大家参考。
一 、扎扎实实打好基础
1、重视课本,系统复习。初中数学基础包括基础知识和基本技能
两方面。现在中考命题仍然以基础知识题为主,有些基础题是课本上
的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材
中的例题式习题,是教材中题目的引申、变形或组合,复习时应以课
本为主。
例如辽宁省2004年中考第17题:AB是圆O的弦,P是圆O的弦AB上的
一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为()
cm。
本题是初三几何课本的原题。这样的题还很多,它告诉我们学好
课本的重要性。在复习时必须深钻教材,把书中的内容进行归纳整理,
使之形成自己的知识结构,尤其课后的读一读,想一想,有些中考题
就在此基础上延伸、拓展。一味地搞题海战术,整天埋头做大量练习
题,其效果并不佳,所以在做题中应注意解题方法的归纳和整理,做
到举一反三。
2、夯实基础,学会思考。中考有近70分为基础题,若把中档题和
较难题中的基础分计入,占的比值会更大。所以在应用基础知识时应
做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思
考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来,
尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及
的概念、公式、公理、定理等。掌握基础知识之间的联系,要做到理
清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点
问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中
的相似三角形、比例推导等等。
中考数学命题除了重视基础知识外,还十分重视对数学方法的考
查。如:配方法、换元法、判别式等操作性较强的方法。
二、综合运用知识,提高自身各种能力
初中数学基本能力有运算能力、思维能力、空间想像能力以及体
现数学与生产、生活相关学科相联系的能力等等。
1、提高综合运用数学知识解题的能力。要求同学们必须做到能把
各个章节中的知识联系起来,并能综合运用,做到触类旁通。目前阶
段应根据自身实际,有针对性地复习,查漏补缺做好知识归纳、解题
方法的归纳。
纵观中考中对能力的考查,大致可分成两个阶段:一是考查运算
能力、空间想像能力和逻辑思维能力及解决纯数学问题的能力;二是
强调阅读能力、创新探索能力和数学应用能力。平时做题时应做到:
1)深刻理解知识本质,平时加强自己审题能力的锻炼,才能做到变更
命题的表达形式后不慌不忙,得心应手。2)寻求不同的解题途径与变
通思维方式。注重自己思维的广阔性,对于同一题目,寻找不同的方
法,做到一题多解,这样才有利于打破思维定势,开拓思路,优化解
题方法。3)变换几何图形的位置、形状、大小后能找到图形之间的联
系,知道哪些量没变、哪些量已改变。例如:折叠问题中折叠前后图
形全等是解决问题的关键。
2、狠抓重点内容,适当练习热点题型。多年来,初中数学的“方
程”、“函数”、“直线型”一直是中考重点内容。“方程思想”、
“函数思想”贯穿于试卷始终。另外,“开放题”、“探索题”、
“阅读理解题”、“方案设计”、“动手操作”等问题也是近几年中
考的热点题型,这些中考题大部分来源于课本,有的对知识性要求不
同,但题型新颖,背景复杂,文字冗长,不易梳理,所以应重视这方
面的学习和训练,以便熟悉、适应这类题型。如何做好中考数学复习
首先,作为考生必须了解中考方面的有关政策,避免复习走弯路、走错路。考生要认真研读《中考考试说明》,领会、看清考试范围,重点研究样题的参考答案中的评分标准,对于每一个给分点要牢记于心,避免解题中出现“跳步”现象。
第二,认识自我,建立自信。中考毕竟不是高考,它的主要职能是了解学生在义务教育阶段的数学学习历程,评价学生的基本数学水平,其次才是作为高中招生的主要依据。纵观近年全国各地中考试题,其试卷的难度分布大多控制在4:5:1或5:4:1(容易题:中等题:难题)。所以,考生大可不必因为不会解部分数学题而怀疑自己的数学能力和水平,甚至可以这样说,只要在这学期的复习阶段奋发努力,中考也不会走大样。
第三,制定复习计划,合理安排复习时间。一般来说,中考复习可安排三轮复习。第一轮,摸清初中数学内容的脉络,开展基础知识系统复习,按初中数学的知识体系,可以把二十一章内容归纳成八个单元:①数与式{实数,整式,分式,二次根式}②方程(组)与不等式(组){一次方程(组),一元一次不等式(组),一元二次方程,分式方程,简单二元二次方程(组)}③函数与统计{一次函数,二次函数,反比例函数,统计}④三角形⑤四边形⑥相似形⑦解直角三角形⑧圆。中考试题中属于学生平时学习常见的“双基”类型题约占60%还多,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹。在此我建议各位考生首先一定要配合你的老师进行复习,切忌走马观花,好高骛远,不要另行一套;其次,复习应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于你觉得较难的题,或者易错的题,应养成做标记的好习惯,以便在第二阶段进行再回头复习。注意:套题训练不易过早,参考资料应以单元为主,本阶段复习宜细不宜粗。
第二轮,针对热点,抓住弱点,开展难点知识专项复习。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。热点题型一般有:阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等。注意:你应该有一本各省市中考试题汇编资料,要知道外地考题中出现的精彩题型,往往就是本地命题的借鉴。
第三轮,锁定目标,备战中考,进行模拟训练。经过第一轮和第二轮的复习,学习的基础知识已基本过关,大约到五月中、下旬就应该是第三轮的模拟训练,其目的就是查漏补缺和调整考试心理,便于以最佳状态进入考场,建议考生在做好学校正常的模拟训练之余,最好使用各地中考试卷,设定标准时间,进行自我模拟测验。注意:自己评分应按评分标准进行,且不可只看答案,不看给分点。
初中数学总复习大致经过三轮,在第一轮复习中,往往存在以下问题:
1.复习无计划,效率低,体现在重点不准,详略不当,难度偏低,对大纲和教材的上下限把握不准。
2.复习不扎实,漏洞多,体现在1)高档题,难度太大,扔掉了大块的基础知识。2)复习速度过快,对学生心中无数,做了夹生饭,返工来不及,不返工漏洞百出。3)要求过松,对学生有要求无落实,大量的复习资料,只布置不批改;无作业。
3.解题不少,能力不高,表现在:1)以题论题,不是以题论法,满足于解题后对一下答案,忽视解题规律的总结。2)题目无序,没有循序渐进。3)题目重复过多,造成时间精力浪费。
在第二轮复习中,应防止出现如下问题:
1.防止把第一轮复习机械重复
2.防止单纯就题论题,应以题论法
3.防止过多搞难题
在第三轮复习中,应防止出现下列问题:
1.过多做练习,以练代讲
2.以复习资料代替教练,不备课,课堂组织松散
3.只注重知识辅导,不进行心理训练。
建议:
让学生向错误学习,放手让学生自己去搞点讲评,自己动手建立错题档案。对于有价值的题目,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,最佳解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。切实解决会而不对,对而不全,全而不美的问题。
『肆』 初三数学总复习.
1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)×180° 51 推论 任意多边的外角和等于360° 52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理3 平行四边形的对角线互相平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n兀R/180 145扇形面积公式:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) 实用工具:常用数学公式 公式分类 公式表达式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
累屎我了!楼主要多加分那!!!!
『伍』 初中数学基础差中考用什么练习好
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
『陆』 听初中数学中考复习课心得
仅供参考
初中数学听课心得体会(一)
今天在我们学校参加了中心校举行的初中数学优质课的听课学习活动,
初中数学听课心得体会
。我们学校的王英老师和北张中学的王改萍老师对分式一节进行了新课程改革示范课,使我感受颇深,受益匪浅。课堂授课水平之高,对教材内容挖掘之深,课堂教学过程设计之精彩,及对课外知识拓展之广,让我对自己所教学科有了更深刻的认识,下面就这方面谈谈自己的一点体会。
1、数学是有趣的。
长期以来,数学几乎成了枯燥乏味的代名词,重知识的传授,轻能力的培养;重学习的结果,轻探究的过程;重反复的练习,轻情感的满足……这一切,使我们学生对数学很难激起兴趣。他们感到数学是枯燥的、烦琐的,数学几乎等同于做题,而且没完没了。学生的学习是认知和情感的结合。每一个学生都渴望挑战,渴望挑战带来的成功,这是学生的心理共性。成功是一种巨大的情绪力量,它能使学生产生主动求知的心理冲突,因此,教师在课堂教学中,要有意识地创设各种情境,为学生提供挑战的机会,不失时机地为他们走向成功搭桥铺路,使他们感到数学是有趣的。一个巧妙的问题引入,把学生探究知识的兴趣激起,你还用担心本节课学生学习的热情吗?这就是老师的智慧,做为一名数学老师,我们就应该在我们的课堂上多提供一些既能学习到数学知识,又让学生感觉有趣的问题,我们的数学教学才会充满活力与魅力。在王英老师这堂课中就在导入时结合133班的人数问题使学生以下就有了兴趣。
2、数学是简单的
领略到了这两位老师的教学艺术,我们看到了平时寡言的学生也可以和大家一起讨论,听到了富有思想的回答,让人忍不住为他们鼓掌,同时也忍不住为老师的教学喝彩,因为她们用最简单的话语来解释数学,让学生们触及到了数学的本质,从而在内心发出强烈的震撼。让孩子们觉得数学的简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的状态。只有这样,才能极大地释放孩子的潜能。而为了做到这一点,老师在课堂上精彩的设计才是最关键的。同学们的学习热情明显的得到了提高,课堂气氛比活动前活跃了很多。游戏中也可以学习数学,数学知识可以通过玩游戏来解决,我想这种方法非常适用初中的同学,我相信参加同学永远都不会忘记在数学课上的一次次争论和老师精心设计的游戏。
3、数学是鲜活的。
现代数学观认为:教材处理的核心总是是从学科世界走向学生的生活世界。当数学和学生的现实生活密切结合时,数学才是活的,富有生命力的,才能激发学生学习数学的兴趣。同时鲜明的现实背景,更有助于学生发现和理解数学概念,形成数学思想和方法,积累数学知识和解决问题的经验。我们应不断攫取生活中的新鲜素材来充实我们的课堂,使我们的数学变得丰富多彩、生动活泼。这些鲜明的生活素材,极大的调动了学生学习数学的兴趣和热情,充分体现了新课标中提出的数学来自于生活又应用于生活这一理念。王英老师在这节课中就把植树造林引入课堂呼吁学生保护坏境。
这次听课活动虽然是短暂的,但是我们的课堂改革以及课程改革是长久,我会将这次学习活动积累的经验,应用于以后自己的数学教学过程中去,努力去做一位优秀的数学教师,
心得体会
《初中数学听课心得体会》(http://www.unjs.com)。
初中数学听课心得体会(二)
本周我有幸听了的一节展示课,下午又聆听了专家们对我校的“三六智慧课堂”操作的建议,一天的听课学习使我收获很大,下面就听课情况谈点自己的感受。
一、激发学生的兴趣金老师在教学过程中非常注意情境的创设,他由日常生活中常见的梯子下滑,从而引出各式各样的问题,并且这些问题都是由学生自己提出的。最后通过师生的共同努力解决了所提出的问题,也引出了本节课所学的内容。所以通过这节课,我又一次发现每一个学生都渴望挑战,渴望挑战带来的成功,这是学生的心理共性。成功是一种巨大的情绪力量,它能使学生产生主动求知的心理冲突,因此,在今后的课堂教学中,我要有意识地创设各种情境,为学生提供挑战的机会,不失时机地引他们走向成功。
二、精心设计了教学课件金老师的课件制作也十分精良,充分发挥了多媒体技术在现代课堂教学中的重要作用,从课题材料的搜集上和视听效果上,都非常富有创意,如花似锦,(www.unjs.com)引人入胜,而且都非常贴近学生生活,做到学数学用数学。体现了数学来源于生活,运用到生活中使枯燥的数学教学变得形象直观,充分激发学生的学习兴趣,更有利于学生对所学知识得牢固掌握。
三、教学语言富有感染力
所有老师都知道教师的教学语言是至关重要的,特别是听了金老师的这节课,使我更深刻的感受到了这一点。课堂教学不但要有准确的专业用语,让学生听懂理解知识,而且还要有丰富幽默的煽情语言,随时关注了学生的情感,调动学生学习的积极性。
四、互动环节引人入胜,氛围融洽。
在数学教学中,金老师能根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到符主任教学方法的与众不同,虽然是第一次给孩子上课,但我却感受到他和孩子之间竟是如此的默契……,在今后的教学中,我一定要注意以学生间信誉心的交流。
以上是我听课的几点心得体会,我以后要把这次学习到的优秀经验,用运到我们的“三六课堂”模式中去,让自己的课堂也更加活跃,真正让学生在快乐的氛围中学习。
初中数学听课心得体会(三)
每学期学校都要组织“开放教学优质课”活动,因为课堂教学是一个“仁者见仁,智者见智”的话题,大家对教材的钻研都有自己独特的见解,所以在课堂教学中都会展现出不同的教学风格。通过听评课不但可以展现教师们扎实的教学功底,而且会让听课者受益匪浅,所以说听评课是一个共同学习一起进步的良好平台。下面是我听数学课的一点心得体会:
一、教师善于创设情境
教师在教学过程中创设的情境,目标明确,能为教学服务。通过创设情境,让学生感觉数学是有趣的。学生的学习是认知和情感的结合。每一个学生都渴望挑战,渴望挑战带来的成功,这是学生的心理共性。成功是一种巨大的情绪力量,它能使学生产生主动求知的心理冲突,因此,教师在课堂教学中,要有意识地设各种情境,为学生提供挑战的机会,不失时机地为他们走向成功。
二、教师精心设计了教学课件
教学课件制作精良,充分发挥了多媒体技术在课堂教学中的重要作用,从课题材料的搜集上和视听效果上,都非常富有创意,如花似锦,引人入胜,而且都非常贴近学生生活,做到学数学用数学。体现了数学来源于生活,运用到生活中使枯燥的数学教学变得形象直观,充分激发学生的学习兴趣更有利于学生对所学知识得牢固掌握。
三、教师的教学语言富有感染力
教师的教学语言也是至关重要的,不但要有准确的数学专业用语,让学生听懂理解知识,而且教师要有及时的课堂评价,随时关注了学生的情感,多表扬来能调动学生学习的积极性。
四、师生互动环节引人入胜,氛围融洽。
在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,我感受到老师和学生之间是如此的默契……看到每个老师都精心的设计每一堂课,从板书、图片、内容,那种工作态度与热情都值得我们每个人去学习,在他们的课堂上很少有见到不学习的孩子,因为他们都深深地被老师的课所吸引着。
五、教学中注重小组合作的学习方式
在教学中要注重加强小组合作学习,让学生通过明确分工,协调配合,对学习内容进行充分的实践和探究,让学生自己找出答案或规律,培养了学生的合作探究能力,体现了探索性的教学过程。
以上是我听数学课的几点心得体会,因为各科的教学理念都是相通的,我以后要把通过听课学习到的优秀经验,用到自己的信息技术实际的教学工作中,让自己的课堂也更加活跃起来,真正让学生在快乐的氛围中学习。充分让学生参与到信息技术的教学中来,从而切实感受到了信息技术课的魅力!充分体现”教师以学生为主体,学生是学习的主人,教师是学习的组织者、引导者和合作者”的教学理念。
『柒』 初中数学中考复习知识点
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
二、锐角三角比(2个考点)
考点5:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点6:解直角三角形及其应用
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)
考点7:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点8:用待定系数法求二次函数的解析式
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点9:画二次函数的图像
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点10:二次函数的图像及其基本性质
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
四、圆的相关概念(6个考点)
考点11:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点12:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点13:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点14:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点15:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
五、数据整理和概率统计(9个考点)
考点16:确定事件和随机事件
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点17:事件发生的可能性大小,事件的概率
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点18:等可能试验中事件的概率问题及概率计算
考核要求
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点19:数据整理与统计图表
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点20:统计的含义
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点21:平均数、加权平均数的概念和计算
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点22:中位数、众数、方差、标准差的概念和计算
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点23:频数、频率的意义,画频数分布直方图和频率分布直方图
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点24:中位数、众数、方差、标准差、频数、频率的应用
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
『捌』 初中数学总复习 哪本复习资料好
你好,其实不管哪门学科,最好的复习资料就是教材,把教材多看几遍,历年真题多做几遍,其他的按照老师布置即可。祝你成功!
『玖』 中考数学复习方法
一、 制定合理的复习计划。
第一轮:基础知识系统复习。摸清初中数学内容的脉版络,开展基础知识权系统复习。
第二轮:专题复习。专题复习的主要目的是为了将第一轮复习知识点、线结合,交织成知识网,注重与现实的联系,以达到能力的培养和提高。
第三轮:套题训练(模拟练习)。重点是查漏补缺,提高学生的综合解题能力。
二、掌握复习策略,提高复习效果。
1、养成独立思考的好习惯。
2、精选精练反思提高:学数学要做一定量的习题,而且要追求做题的质量。要精选精做,讲效果。题海战术要不得,但一定量的训练是必不可少的。
3、建立错题本,多总结反思,举一反三。
4、要注意体会、归纳题目中的数学方法和数学思想。 中考数学试题特别重视突出数学思想和方法的考查,初中数学中常用的基本方法有:配方法、换元法、待定系数法、观察法等;数学思想有:函数思想、数形结合思想、分类讨论思想、化归思想等。
三、把握好心态,苦中取乐。要有战胜困难的勇气,从做对试题中感受成功的喜悦。