数学题
与数学有关的题目,都是数学题。
⑵ 各式各样的数学题有哪些
1.泥板上的古代巴比伦王国的位置,在西亚底格里斯河和幼发拉底河的中下游地区,现在的伊拉克境内,巴比伦国家建立于公元前19世纪,是世界四大文明古国之一。
巴比伦人使用特殊的楔形文字,他们把文字刻在泥板上,然后晒干,泥板晒干后和石头一样坚硬,可以长期保存。
从发掘出来的泥板上,人们发现了3000多年前巴比伦人出的数学题:
“10个兄弟分100两银子,一个人比一个人多,只知道每一级相差的数量都一样,但是究竟相差多少不知道,现在第八个兄弟分到6两银子,问一级相差多少?”
如果10个兄弟平均分100两银子,每人应该分10两,现在第八个兄弟只分到了6两,说明老大分得最多,往下是一个比一个少。
按着题目所给定的条件,应该有以下关系:
老二得到的是老大减去一倍的差,老三得到的是老大减去二倍的差,老四得到的是老大减去三倍的差,……
老十得到的是老大减去九倍的差。
这样,老大与老十共得银两=老二与老九共得银两=老三与老八共得银两=老四与老七共得银两=老五与老六共得银两=20两已知老八得6两,可求出老三得20-6=14两,老三比老八多得14-6=8,另一方面,老三与老八相差7-2=5倍的差,因此,差=8÷5=1.6(两)
答:一级相差1.6两银子。
巴比伦的数学和天文学发展很快,他们除了首先使用60进位制外,还确定一个月(月亮月)有30天,一年(月亮年)有12个月亮月,为了不落后太阳年,在某些年里用规定闰月的办法来纠正。
巴比伦人了解行星的存在,他们崇拜太阳、月亮、金星,把数3看作是“幸福的”,晚些时候,他们又发现了木星、火星、水星、土星,这时数7被看作是“幸福的”。
巴比伦人特别注意研究月亮,把弯月的明亮部分与月面全面积之比,叫做“月相”,在一块泥板上记载有关月相的题目:
“设月亮全面积为240,从新月到满月的15天中,头5天每天都是前一天的2倍,即5,10,20,40,80,后10天每天都按着相同数值增加,问增加的数值是多少?”
月亮全面积为240,第五天月亮面积为80,后10天月亮共增加的面积为240-80=160。
因此,每天增加的数值为160÷10=16。
答:增加的数值为16。
2.纸草上的《兰特纸草书》是4000年前古埃及人的一本数学书,上面用象形文字记载了许多有趣的数学题,比如:
在7,7×7,7×7×7,7×7×7×7,7×7×7×7×7,……
这些数字上面有几个象形符号:房子、猫、老鼠、大麦、斗,翻译出来就是:
“有7座房子,每座房子里有7只猫,每只猫吃了7只老鼠,每只老鼠吃了7穗大麦,每穗大麦种子可以长出7斗大麦,请算出房子、猫、老鼠、大麦和斗的总数。”
奇怪的是古代俄罗斯民间也流传着类似的算术题:
“路上走着七个老头,每个老头拿着七根手杖,每根手杖上有七个树杈,每个树杈上挂着七个竹篮,每个竹篮里有七个竹笼,每个竹笼里有七个麻雀,总共有多少麻雀?”
古俄罗斯的题目比较简单,老头数是7,手杖数是7×7=49,树杈数是7×7×7=49×7=343,竹篮数是7×7×7×7=343×7=2401,竹笼数是7×7×7×7×7=2401×7=16807,麻雀数是7×7×7×7×7×7=16807×7=117649。总共有十一万七千六百四十九只麻雀,七个老头能提着十一万多只麻雀溜弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重。
《兰特纸草书》上在猫吃老鼠、老鼠吃大麦的问题后面有解答,说是用2801乘以7。
求房子、猫、老鼠、大麦和斗的总数,就是求和7+7×7+7×7×7+7×7×7×7+7×7×7×7×7=7+49+343+2401+16807=19607。这同上面2801×7=19607的答数一样,古代埃及人在4000多年前就掌握了这种特殊的求和方法。
类似的问题在一首古老的英国童谣中也出现过:
“我赴圣地爱弗西,途遇妇子数有七,一人七袋手中提,一猫七子紧相依,妇与布袋猫与子,几何同时赴圣地?”
意大利数学家斐波那契在1202年出版的《算盘书》中也有类似问题:
“有7个老妇人在去罗马的路上,每个人有7匹骡子;每匹骡子驮7只口袋,每只动袋装7个大面包,每个面包带7把小刀,每把小刀有七层鞘,在去罗马的路上,妇人、骡子、面包、小刀和刀鞘,一共有多少?”同一类问题,在不同的时代、不同的国家以不同的形式出现,但是,时间最早的还要数古埃及《兰特纸草书》。
古埃及还流传着“某人盗宝”的题目:
“某人从宝库中取宝13,另一人又从剩余的宝中取走117,宝库中还剩宝150件,宝库中原有宝多少件?”
这个问题的提法与现行教科书上的题目很相像,可以这样来解:
设宝库中原有宝为1,则第一人取走13,第二人取(1-12)×117=252宝库最后剩下1-13-(1-13)×117=1-13-251=3251。
因此,宝库原有宝150÷3251=150×5132=23916。
列出综合算式为150÷[1-13-(1-13)×117=239116。
《兰特纸草书》还有这样一道题:
“有物品若干件,其三分之二,其一半,其七分之一及其全部,共33件,求物品的件数。”
用算术法来解,可设全部为1,则物品的件数为33÷(23+12+17+1)
=33÷9742=33×4297=142897答案是唯一的,但是纸草书上的答案却是14,14,156,197,1194,1388,1679,1776。这是怎么回事?难道这道题有八个答案吗?
原来纸草书上用古埃及分数的形式给出答案,意思是14+14+156+197+1194+1388+1679+1776。不妨算出来看看:
14+14+156+197+1194+1388+1679+1776=14+1456+156+197+197×2+197×4+197×7+197×8=14+1456+8+4+2+197×8+197×7=14+1456+1597×8+197×7=14+1456+11397×56=14+156897×56=142897这和我们算得的答案相同。
3.诗歌中的希腊是世界文明古国之一,它有着灿烂的古代文化,在《希腊文集》中有一些用诗歌写成的数学题。
在“爱神的烦忧”中,爱罗斯在古代希腊神话中的爱神,吉波莉达是塞浦路斯岛的守护神,九位文艺女神中,叶芙特尔波管音乐,爱拉托管爱情诗,达利娅管喜剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
爱神的烦忧“爱罗斯在路旁哭泣,泪水一滴接一滴。
吉波莉达向前问道:
‘是什么事情使你如此悲伤?
我可能够帮助你?’爱罗斯回答道:
‘九位文艺女神,不知来自何方,把我从赫尔康山采回的苹果,几乎一扫而光。
叶芙特尔波飞快抢走十二分之一,爱拉托抢得更多——七个苹果中拿走一个。
八分之一被达利娅抢走,比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,只取走二十分之一。
可又来了克里奥,她的收获比这多四倍。
还有三位女神,个个都不空手:
30个苹果归波利尼娅,120个苹果归乌拉尼娅,300个苹果归卡利奥帕。
我,可怜的爱罗斯,爱罗斯原有多少苹果?还剩50个苹果。’”
这首26行的诗,给出了一道数字挺多的数学题,题目中原有苹果数不知道,经过九位文艺女神的抢劫,爱罗斯只剩下50个苹果,是“知道部分求全体类型”的数学题。
设爱罗斯原有苹果数为x。
依题意,得112x+17x+18x+14x+120x+15x+30+120+300+50=x整理,得143168x+500=x∴x=33600(个)下面的“独眼巨人”中给出了另一种类型的数学题:
“这是一座独眼巨人的铜像,雕塑家技艺高超,铜像中巧设机关:
巨人的手、口和独眼,都连接着大小水管,通过手的水管,三天流满水池;通过独眼的水管——需要一天;从口中吐出的水更快,五分之二天就足够,三处同时放水,水池几时流满?”
设水池的容积为1,三管同开流满水池所需时间为x天,则13x+x+52x=1∴x=623下面是我国的一首打油诗:
“李白提壶去买酒:
遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
试问壶中原有多少酒?”
这首打油诗的意思是,李白的壶里原来就有酒,每次遇到酒店便将壶里的酒增加一倍;李白赏花时就要饮酒作诗,每次一次喝一斗酒(斗是古代装酒的器具),这样反复经过三次,最后将壶中的酒全部喝光,问李白原来壶中有多少酒?
解这道题最好使用反推法来解:
李白第三次见到花时,将壶中的酒全部喝光了,说明他见到花前,壶内只有一斗酒。进一步推出李白第三次遇到酒店前,壶里有12斗酒,按着这种推算方法,可以算出第二次见到花前,壶里有112斗酒,第二次见到酒店前壶里有112÷2=34斗酒;第一次见到花前壶134里有斗酒,第一次遇到酒店前,壶里有原来壶里有斗酒134÷2=78原来壶里有78斗酒。
4.遗嘱里的在按遗嘱分配遗产的问题中,有许多有趣的数学题。
俄国著名数学家斯特兰诺留勃夫斯基曾提出这样一道分配遗产问题:“父亲在遗嘱里要求把遗产的13分给儿子,25分给女儿;剩余的钱中,2500卢布偿还债务。3000卢布留给母亲,遗产共有多少!子女各分多少!”
设总遗产为x卢布。
则有13x+25x+2500+3000=x解得:x=20625。
儿子分20625×13=6875(卢布),女儿分20625×25=8250(卢布)。
结果是女儿分得最多,得8250卢布,儿子次之,得6875卢布,母亲分得最少,得3000卢布,看来父亲是喜爱自己的女儿。
下面的故事最初在阿拉伯民间流传,后来传到了世界各国,故事说,一位老人养了17只羊,老人去世后在遗嘱中要求将17只羊按比例分给三个儿子,大儿子分给12,二儿子分给13,三儿子分19,在分羊时不充许宰杀羊。
看完父亲的遗嘱,三个儿子犯了愁,17是个质数,它既不能被2整除,也不能被3和9整除,又不许杀羊来分,这可怎么办?
聪明的邻居得到这个消息后,牵着一只羊跑来帮忙,邻居说:“我借给你们一只羊,这样18只羊就好分了。”
老大分18×12=9(只),老二分18×13=6(只),老三分18×19=2(只)。
合在一起是9+6+2=17,正好17只羊,还剩下一只羊,邻居把它牵回去了。
羊被邻居分完了。再深入想一想这个问题,我们会发现遗嘱中不合理的地方,如果把老人留的羊做为整体1的话,由于12+13+19=1718所以或者是三个儿子不能把全部羊分完,还留下118,哪个儿子也没给1817;或者是要比他所留下的羊再多出一只时,才可以分,聪明的邻居就是根据1718这个分数,又领来一只羊,凑成1818,分去1718,还剩下118只羊,就是他自己的那只羊。
再看一道有关遗嘱的题目:
某人临死时,他的妻子已经怀孕,他对妻子说:“你生下的孩子如果是男的,把财产的23给他,如果是女的25,把财产的给她,剩下的给你。”说完就死了。
说也凑巧,他妻子生下的却是一男一女双胞胎,这一下财产将怎样分?
可以按比例来解:
儿子和妻子的分配比例是23∶13=2∶1女儿和妻子的分配比便是25∶35=2∶3。
由此可知女儿、妻子、儿子的分配比例是2∶3∶6,按这个比例分配就合理了。
5.民谣中的在世界各地流传着一些用民谣形式写成的数学题。
美国民谣:
“一个老酒鬼,名叫巴特恩,吃肉片和排骨共用钱九角四分,每块排骨一角一,每片肉价只七分,连排骨带肉片吃了整十块哟,问问你:
吃了几块排骨几片肉,我们的巴特恩?”
可以这样来解算:
假设巴特恩吃的是十片肉片的话,他一共花70分钱,用94分减去70分,得差24分,这24分钱是什么呢!
由于巴特恩吃的不都是肉片,有排骨,而一块排骨比一片肉片贵11-7=4分,这24分是排骨和肉片差价得到的,可以求出巴特恩吃的排骨数:
(94-7×10)÷(11-7)=24÷4=6(块)10-6=4(片)巴特恩吃了六块排,四片肉片。
中国也有类似的民谣:
“一队强盗一队狗,二队并作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?”
这道题和《孙子算经》中的“鸡兔同笼”是同一种类型题,只不过,把鸡换成强盗,把兔换成狗就是了,具体算法是(360×4-890)÷(4-2)=275360-275=85强盗有275人,狗有85条。
还有首中国民谣:
“几个老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两梨。
究竟有几个老头、几个梨?”
设人数为x,则梨为x+1个,依题意,得:
2x=(x+1)+2,x=3,x+1=4“寒鸦与树枝”是一首俄罗斯的民谣:
“飞来几只寒鸦,落到树枝上停歇。
要是每支树枝上落下一只寒鸦,那么就有一只寒鸦缺少一支树枝;要是每支树枝上落下两只寒鸦,那么就有一支树枝落不上寒鸦。
你说共有几只寒鸦?
你说共有几支树枝?”
可以这样来解:
如果每支树枝上落两只寒鸦,比每支树枝落一只寒鸦共多出2+1=3只寒鸦,而这时每支树枝上所落寒鸦只数的差是2-1=1只。
用多出来的寒鸦数除以每支树枝寒鸦数,就等于树枝数。
因此,(2+1)÷(2-1)
=3÷1=3(支)寒鸦数为3+1=4(只)。
答案是有3支树枝,4只寒鸦。
下面这首民谣也很有趣,是中国民谣:
“牧童王小良,放牧一群羊。
问他羊几只,请你细细想。
头数加只数,只数减头数。
只数乘头数,只数除头数。
四数连加起,正好一百数。”
其实头数和只数是一回事,因此,只数减头数得0,只数除头数得1。这样一来,有:只数×只数+2×只数=99。
使用试验法,可得只数等于9,因为9×9+2×9=99,故羊有9只。
⑶ 数学题80道
思维训练题,非常灵活,不认真的同学容易掉陷阱
想要提高数学成绩,一定要从思维能力入手!
孩子数学成绩差,问题究竟在哪儿呢?当家长们发现孩子成绩下滑,又会怎么做呢?大部分家长都是先责骂孩子一顿,然后买来一大推试卷和习题,让孩子埋头苦做,做不完试卷就不能休息,然而这样去却没有半点效果,孩子反而越来越讨厌学习,还喜欢和父母斗嘴,越来越不爱听父母的话。
其实,不是孩子学习成绩难以提高,而是家长们用错了方法。数学是一门非常灵活的学科,非常考验孩子思维方式,让孩子一直做题反而会让孩子一直困在死胡同里出不来,思维打不开,做题就没有解题思路,就只能白白放弃。
家长们要是孩子学习路上的引导者,当孩子出现问题时,家长们要帮助孩子认识到问题所在,并帮助孩子分析并解决问题,而不是一味的责怪。想要提高孩子的数学成绩,也一定要多训练孩子的思维,让孩子做一些益智的趣味数学题,打开思路,让孩子获得成就感,孩子才会越来越自信,也会爱上数学的学习。
今天老师整理了五年级数学40道思维训练题,题型非常灵活,建议家长们可以为孩子打印一份,不认真的同学容易掉陷进,很那拿满分.文末附记忆训练方法,提高孩子学习效率。
向左转|向右转
⑷ 世界上最难的数学题是什么
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。参考资料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14
⑸ 数学题目
原题目是:张三本月用现金购买甲产品20件,共计600元,本月出售了10件,每件价格60元,其中4件收到的是现金,6件尚未收到货款,则张三这个月的利润为()
花费600元,收入10*60=600元,所以利润是600-600=0元,选C
⑹ 平时想做一些趣味的数学题 需要下载什么软件
说道趣味的数学题,我与2019年出过一道,名叫《九方集》,该题几乎难倒了所有数学从业者,你不妨试试:
九方集
⑺ 数学问题!!!
一共借了1000,用去970,剩下30元, 还爸爸10块, 还妈妈10块,也就是970+10+10=990,自己剩下了10块,那么990+10=1000。
其实这句话就不对了“自己剩下了10块, 欠爸爸490, 欠妈妈490”,970除以2等于485,再加上还的10元,就是欠495元,而不是490元。
或者这样算:买了双皮鞋用了970,一共还了20元,970+20=990,(不是分别欠490,而是一共欠990),然后加上自己的10元就等于1000。这种题属于一种思维幻觉题,以后遇到这类的题只要换位思考一下就出来了。
(7)数学题扩展阅读:
定义定理公式
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
⑻ 数学题数学题
那我就来一题吧,你肯定不会:
趣题《九方集》
注:做1个小时写不出就别思考了。
⑼ 数学题目。。
1-x³=(1-x)(1+x+x²)
原式=lim(x->1)[(1+x+x²)/(1-x³)-3/(1-x³)]
=lim(x->1)(x²+x-2)/(1-x³)
=lim(x->1)-(1-x)(x+2)/(1-x)(1+x+x²)
=lim(x->1) -(x+2)/(1+x+x²)
=-3/3
=-1