数学期望
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:内
1、离散型:
离散型随机变量X的取值容为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
Ⅱ 均值和数学期望是什么怎么区分
均值和数学期望没有区别。在概率论以及统计学中,数学期望或均值,亦简称期望,是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,反映了随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于“期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
在概率和统计学中,一个随机变量的期望值(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
(2)数学期望扩展阅读
数学期望的应用
(1)经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元。
若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润。并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
(2)体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利。
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
参考资料来源:网络-数学期望
Ⅲ 数学期望的意义是什么
数学期望
mathematical expectation
随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个。
数学期望的定义
定义1:
按照定义,离散随机变量的一切可能值工与对应的概率P(若二龙)的乘积之和称为数学期望,记为咐.如果随机变量只取得有限个值:x,、瓜、兀
源自: 挡土墙优化设计与风险决策研究——兼述黄... 《南水北调与水利科技》 2004年 劳道邦,李荣义
来源文章摘要:挡土墙作为一般土建工程的拦土建筑物常用在闸坝翼墙和渡槽、倒虹吸的进出口过渡段,它的优化设计问题常被忽视。实际上各类挡土墙间的技术和经济效益差别是相当大的。而一些工程的现实条件又使一些常用挡土墙呈现出诸多方面局限性。黄壁庄水库除险加固工程的混凝土生产系统的挡土墙建设在优化设计方面向前迈进了一步,在技术和经济效益方面取得明显效果,其经验可供同类工程建设参考。
定义2:
1 决定可靠性的因素常规的安全系数是根据经验而选取的,即取材料的强度极限均值(概率理论中称为数学期望)与工作应力均值(数学期望)之比
Ⅳ “数学期望”是什么意思
离散型随机变量的数学期望
定义:离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为的数学期望.(设级数绝对收敛)记作.
其含义实际上是随机变量的平均取值.
Ⅳ 数学期望的公式是什么
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)
X ;1,X ;2,X ;3,……,X。
n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn).
(5)数学期望扩展阅读
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
Ⅵ 数学期望值是什么
此抽奖可能发生的结果:
抽到1000球:概率为
c1,1/c4,1=1/4
抽到800球:
概率为
c1,1/c4,1=1/4
抽到600球:概率为
c1,1/c4,1=1/4
抽到0
球:概率为
c1,1/c4,1=1/4
第一次摸到任意球的概率的几率都一样
期望值就是概率乘以它的奖金:1000*1/4+800*1/4+600*1/4+0*1/4=600
但是抽到0球还可以再抽一次,可能发生的结果依然是:
抽到1000球:概率为
c1,1/c4,1=1/4
抽到800球:
概率为
c1,1/c4,1=1/4
抽到600球:概率为
c1,1/c4,1=1/4
抽到0
球:概率为
c1,1/c4,1=1/4
所以期望值是:1000*1/4+800*1/4+600*1/4+0*1/4=600
但是能产生第二次抽奖的可能的前提是必须第一次摸到0球,而第一次摸到0球的概率是1/4,所以第二次的摸奖的期望奖金还需要乘以1/4。
所以第二次期望值是
600*1/4=150
如果第二次又摸到0球,题中说不能再摸了,就不讨论了。
所以把没摸到0球的期望值和摸到0球的期望值分开讨论后再相加,就是答案了。600+150=750
可得到的奖金期望值是750元
解答完毕~
希望您能看明白~呵呵
Ⅶ “数学期望”的意义是什么
数学期望
l
离散型随机变量的数学期望
定义:离散型随机变量的一切可能的取值xi与对应的概率p(=xi)之积的和称为的数学期望.(设级数绝对收敛)记作.
其含义实际上是随机变量的平均取值.
具体就是你自己对数学的期望是多大?
Ⅷ “数学期望”是什么意思
数学期望(mean)是最基本的数学特征之一,运用于概率论和统计学中,它是每个可能结果的概率乘以其结果的总和。它反映了随机变量的平均值。
需要注意的是,期望并不一定等同于常识中的“期望”——“期望”未必等于每一个结果。期望值是变量输出值的平均值。期望不一定包含在变量的输出值集合中。
大数定律规定,当重复次数接近无穷大时,数值的算术平均值几乎肯定会收敛到期望值。
(8)数学期望扩展阅读:
应用:
1、经济决策
假设超市销售某一商品,周需求x的取值范围为10-30,商品的采购量取值范围为10-30。超市每售出一件商品可获利500元。如果供过于求,就会降价,每加工一件商品就要亏损10元。0元;如果供过于求,可以从其他超市转手。此时,超市商品可获利300元。超市在计算进货量时,能得到最大的利润吗?得到最大利润的期望值。
分析:由于商品的需求(销售量)x是一个随机变量,它在区间[10,30]上均匀分布,而商品的销售利润值y也是一个随机变量。它是x的函数,称为随机变量函数。问题涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。因此,求解该问题的过程是确定y与x之间的函数关系,然后求出y的期望e(y),最后用极值法求出e(y)的最大点和最大值。
2、竞争问题
乒乓球是我们的国球,上个世纪的军事球也给中国带来了一些外交。中国在这项运动中具有绝对优势。本文提出了一个关于乒乓球比赛安排的问题:假设德国(德国选手波尔在中国也有很多球迷)和中国打乒乓球。有两种竞赛制度,一种是每方三名优胜者,另一种是每方五名优胜者,另一种是每方五名优胜者。哪一个对中国队更有利?
Ⅸ 什么叫数学期望
数学期望是概率论早期发展中就已产生的一个概念。当时研究的概率问题大多与赌博有关。假如某人在一局赌博中面临如下的情况:在总共m+n种等可能出现的结果中,有m种结果可赢得α,其余n种结果可赢得b), 则就是他在该局赌博中所能期望的收入。数学期望的这种初始形式早在1657年即由荷兰数学家C.惠更斯明确提出。它是简单算术平均的一种推广。 设x为离散型随机变量,它取值x0,x1,…的概率分别为p1,p2,…,则当级数时,定义它的期望为。这里之所以要求级数绝对收敛,是因为作为期望的这种平均,不应当依赖于求和的次序。若x 为连续型随机变量,其密度函数为p(x),则当积分时,定义它的期望为。在一般场合,设x是概率空间(Ω,F,p)上的随机变量,其分布函数为F(x),则当时,定义x的期望为 式中是斯蒂尔杰斯积分;或是随机变量x 在Ω上对概率测度p的积分。然而,并非所有的随机变量都具有期望。 随机变量的期望,有下列性质:E(x+Y)=Ex+EY;若把常数α看作随机变量,则Eα=α;若x≥0,则Ex≥0;若x与Y独立,则E(XY)=Ex·EY;若随机变量x1,x2,…,xn有联合分布函数F(x1,x2,…,xn),则对一类n元函数