当前位置:首页 » 语数英语 » 2012台州中考数学

2012台州中考数学

发布时间: 2020-11-19 20:40:08

1. 2010台州中考数学第23题第3问怎么

解答:2010台州中考数学第23题
解:(1)①在Rt△ABC中,D是AB的中点,
∴AD=BD=AD= ,∠B=∠BDC=60°
又∵∠A=30°,
∴∠ACD=60°-30°=30°,
又∵∠CDE=60°,或∠CDF=60°时,
∴∠CKD=90°,
∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合),
∵CK=0,或AM=0,
∴AM+CK=MK;(2分)
②由①,得
∠ACD=30°,∠CDB=60°,
又∵∠A=30°,∠CDF=30,∠EDF=60°,
∴∠ADM=30°,
∴AM=MD,CK=KD,
∴AM+CK=MD+KD,
∴在△MKD中,AM+CK>MK(两边之和大于第三边).(2分)

(2)>(2分)
证明:作点C关于FD的对称点G,
连接GK,GM,GD,
则CD=GD,GK=CK,∠GDK=∠CDK,
∵D是AB的中点,∴AD=CD=GD、
∵∠A=30°,∴∠CDA=120°,
∵∠EDF=60°,∴∠GDM+∠GDK=60°,
∠ADM+∠CDK=60°.
∴∠ADM=∠GDM,(3分)
∵DM=DM,
∴△ADM≌△GDM,∴GM=AM.
∵GM+GK>MK,∴AM+CK>MK.(1分)

(3)解:由(2),得GM=AM,GK=CK,
∵MK2+CK2=AM2,
∴MK2+GK2=GM2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴<CKG=90°,∠FKC= ∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴<FKC=∠CDF+∠ACD,
∴∠CDF=<FKC-+∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴ MK:GM=根号3:2
∴MK:AM=根号3:2

2. 2010中考数学台州市16题 23题(3) 24题(3)

拜托我要的是详细的解答。

热点内容
2017年四川数学卷 发布:2025-05-18 00:16:14 浏览:719
中国社会科学院暑期 发布:2025-05-17 23:31:35 浏览:687
简单广场舞教学 发布:2025-05-17 20:37:48 浏览:13
二级学科博士点 发布:2025-05-17 19:10:15 浏览:125
永兴教师招聘 发布:2025-05-17 19:10:15 浏览:664
高中教师资格证考试用书 发布:2025-05-17 16:29:17 浏览:52
小学教师的条件 发布:2025-05-17 16:21:01 浏览:419
教育学教育心理学题库 发布:2025-05-17 16:14:16 浏览:819
夏威夷群岛地理位置 发布:2025-05-17 16:10:46 浏览:949
奴隶老师漫画全集 发布:2025-05-17 16:01:34 浏览:911