高一数学集合练习题
① 高一数学集合练习题
1.已知全集U={X<=5,且x∈N*},则U={小于等于5的正整数},A={x2-5x+q=0} (CuA)={除了A中的解剩下的小于等于5的正整数}
(CuA)U B={1,4,3,5},少了一个2.所以2为A中的一个解 代入得q=6由q=6 可算出A={2,3} 所以(CuA)={1,4,5} 但是(CuA)U B={1,4,3,5}可知B中定有1元素为3 代入3 得p=-7
所以q=6 p=-7
2.你打错了 因该是A交B不等于空集,因为 集合B就可以算出无数个元素 那么他们并起来也是无数个 肯定不是空集
② 急!!!高一数学,集合的运算—交集(例题和练习)跪求学霸帮忙!!!
A组1:
集合A的元素是0, 1,2和4. 集合B的元素是1,2,4和8. 集合A和集合B的公共元素是1,2和4.
A组2:
不等式的解是 1<x<4.
你问的问题有点多,让其他人也回答一部分吧。 :)
③ 高一数学必修1 习题
高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作 ,即
CSA=
韦
恩
图
示
性
质 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
例题:
1.下列四组对象,能构成集合的是 ( )
A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有 个
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .
4.设集合A= ,B= ,若A B,则 的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
? 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象) B(象)”
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
1.求下列函数的定义域:
⑴ ⑵
2.设函数 的定义域为 ,则函数 的定义域为_ _
3.若函数 的定义域为 ,则函数 的定义域是
4.函数 ,若 ,则 =
5.求下列函数的值域:
⑴ ⑵
(3) (4)
6.已知函数 ,求函数 , 的解析式
7.已知函数 满足 ,则 = 。
8.设 是R上的奇函数,且当 时, ,则当 时 =
在R上的解析式为
9.求下列函数的单调区间:
⑴ ⑵ ⑶
10.判断函数 的单调性并证明你的结论.
11.设函数 判断它的奇偶性并且求证: .
第二章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.
? 负数没有偶次方根;0的任何次方根都是0,记作 。
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
,
? 0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1) ? ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a>1 0<a<1
定义域 R 定义域 R
值域y>0 值域y>0
在R上单调递增 在R上单调递减
非奇非偶函数 非奇非偶函数
函数图象都过定点(0,1) 函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
二、对数函数
(一)对数
1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式.
两个重要对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
? 指数式与对数式的互化
幂值 真数
= N = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
○1 ? + ;
○2 - ;
○3 .
注意:换底公式
( ,且 ; ,且 ; ).
利用换底公式推导下面的结论
(1) ;(2) .
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>1 0<a<1
定义域x>0 定义域x>0
值域为R 值域为R
在R上递增 在R上递减
函数图象都过定点(1,0) 函数图象都过定点(1,0)
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
例题:
1. 已知a>0,a 0,函数y=ax与y=loga(-x)的图象只能是 ( )
2.计算: ① ;② = ; = ;
③ =
3.函数y=log (2x2-3x+1)的递减区间为
4.若函数 在区间 上的最大值是最小值的3倍,则a=
5.已知 ,(1)求 的定义域(2)求使 的 的取值范围
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。
即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
5.函数的模型
④ 高中数学必修一,集合内容的练习题。请问:0是最小的自然数,N则表示自然数的集合。那么此时,如果当K
可以看成是
1÷5=0······1
⑤ 高中B版人教教材 数学必修一 集合1.1,有关课后练习及习题的问题
1.因为N,R,Q,Z是没有具体数量的,你无法确定它们具体包含多少个元素。所以为无限集。
2.两个都是错误的。
4.两个数相乘,其中这两个数都叫做积的因数。我们就说a能被b整除,或b能整除a。a叫b的倍数,b叫a的约数(或因数)。
5.{x | 1 = |x| }
6.对边相等且平行
如果对你有用的话,剩下的以后再回答。
⑥ 高一数学集合练习题
由已知:方程至少有一个负根
①当a-2=0时,原方程为-4=0,等式不成立,舍去。
②当a-2≠0时:
∵方程有实数解
∴△=[2(a-2)]² - 4•(a-2)•(-4)
=4(a-2)² + 16(a-2)
=4a² - 16a + 16 + 16a - 32
=4a² - 16
=4(a+2)(a-2)>0
则a>2或a<-2
根据韦达定理:x1 + x2=-2,
x1x2=-4/(a-2)
1)当方程只有一个负根时:-4/(a-2)<0
则a>2
2)当方程两个根都是负值时:-4/(a-2)>0
则a<2
∴a>2或a<-2
⑦ 求上海高一数学练习册上1到21页的题目
)||看看是不是这个已知集合A={(X,Y)|Y=-X+1},集合B={(X,Y)|Y=X平方-1},求版A交B 已知集合权A={X|X是锐角三角形},集合B={X|X是钝角3三角形},求A交B,A并B 已知结婚A={X|X平方+PX+15=0},集合B={X|X平方-5X+q=0},且A交B={3},求P,q的值和AUB 已知集合A={X|X小于等于1},集合B={X|X大于等于a}且,AUB=R,求a的取值范围已知结合A={X|4-X大于2X+1},R为实数集,求CRA 已知集合A={1,4,X},集合B={1,X平方},且AUB=A,求X的值及集合A,B 已知集合A={X|-2小于等于X小于等于4},集合B={X|-3小于X小于2},集合C={X|-3小于等于X小于0},求AUB,(A交B)并C,(A并C)交(B并C)已知集合U={X|X大于等于2},结合A={Y|3小于等于Y小鱼4},集合B={Z|2小于等于Z小于5},求CUA交B、CUB并B并A
⑧ 高一数学集合入门练习题(要答案) 多多益善!!!
集合元素的“三性”及其应用
集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错.
下面就集合元素的这三个性质及应用加以说明.
一、注意正确理解其意义
1.确定性:
即对任意给定的对象,相对于某个集合来说,要么属于这个集合,要么不属于这个集合,二者必居其一,关键是理解“确定”的含义.
2.互异性:
对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),即同一个集合中的任何两个元素都是不同的对象,相同的对象归入任一个集合时,只能作为这个集合的一个元素.
3.无序性:
由于集合中元素是确定且是互异的,元素完全相同的集合是相等的集合,因此,集合中的元素与顺序无关.
二、注意正确利用三性解题
例1下列命题正确的有哪几个?
⑴很小的实数可以构成集合;
⑵集合{1,5}与集合{5,1}是不同的集合;
⑶集合{(1,5)}与集合{(5,1)}是同一个集合;
⑷由1,,,∣-∣,0.5 这些数组成的集合有5个元素.
分析:这类题目主要考查对集合概念的理解,解决这类问题的关键是以集合中元素的确定性、互异性、无序性为标准作出判断.
解:⑴很小是一个模糊概念,没有明确的标准,故我们很难确定某一个对象是否在其中,不符合集合元素的确定性,因此,“很小的实数”不能构成集合,故⑴错.
⑵{1,5}是由两个数1,5组成的集合,根据集合元素的无序性,它与{5,1}是同一个集合,故⑵错.
⑶{(1,5)}是由一个点(1,5)组成的单元素集合,由于(1,5)与(5,1)表示两个不同的点,所以{(1,5)}和{(5,1)}是不同的两个集合,故⑶错.
⑷=,∣-∣=0.5,因此,由1,,,∣-∣,0.5 这些数组成的集合为{1,,0.5},共有3个元素.因此,⑷也错.
例2已知集合A={,+,+2},B={,,},其中,A=B,求的值.
分析:本题最常见的错误是认为这两个集合的对应项相同,列出相应的关系式,然后求出的值,这显然违背了集合的无序性.
解:∵A=B,及集合元素的无序性,
∴有以下两种情形:
①
消去,解得=1,此时==,与集合中元素的互异性矛盾,∴1.
②消去,解得=-,或=1(舍去),故的值为-.
评注:本题中,利用集合元素的无序性和两集合相等时的元素特征,得出两个方程组,打开了解题的大门,求出值后,又利用了集合元素的互异性进行检验,保证了所求的结果的准确性.
例3设A={x∣+(b+2)x+b+1=0,bR},求A中所有元素之和.
错解:由+(b+2)x+b+1=0得(x+1)(x+b+1)=0
(1)当b=0时,x1 =x2-1,此时A中的元素之和为-2.
(2)当b0时,x1 +x2=-b-2.
分析
上述解法错在(1)上,当b=0时,方程有二重根-1,集合A={-1},故元素之和为-1,犯错误的原因是忽视了集合中元素的“互异性”.因此,在列举法表示集合时,要特别注意元素的“互异性”.
例4已知集合 {2,3,+4+2}, B={0,7, +4-2,2-},且AB={3,7},求值.
分析:
∵ AB={3,7}
∴ +4+2=7.即 =1,或=-5.
至此不少学生认为大功告成,事实上,这只求出了集合A,集合B中的元素是什么,它是否满足元素的互异性,有待于进一步检查.当=-5时,2-=7, 在B中重复出现,这与元素的互异性相矛盾,故应舍去=-5.当=1时, B={0,7,3,1} 且AB={3,7}
∴ =1
评注:集合元素的确定性,互异性,无序性在解题中有重要的指导作用,忽视这一点差之毫厘则失之千里.
集合与函数、导数部分易错题分析
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.你会用补集的思想解决有关问题吗?
3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗?
[问题]:、 、 的区别是什么?
4.绝对值不等式的解法及其几何意义是什么?
5.解一元一次不等式(组)的基本步骤是什么?
[问题]:如何解不等式:?
6.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?注意到对二次项系数及对称轴进行讨论了吗?
7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
[问题]:请举例说明“否命题”与“命题的否定形式”的区别.
什么是映射、什么是一一映射?
[问题]:已知:A={1,2,3},B={1,2,3},那么可以作个A到B上的映射,那么可以作 个A到B上的一一映射.
9.函数的表示方法有哪一些?如何判断函数的单调性、周期性、奇偶性?单调性、周期性、奇偶性在函数的图象上如何反应?什么样的函数有反函数?如何求反函数?互为反函数的图象间有什么关系?求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗?
[问题]:已知函数求函数的单调递增区间.(你处理函数问题是是否将定义域放在首位)
[问题]:已知函数图象与的图象关于直线.
10、如何正确表示分数指数幂?指数、对数的运算性质是什么?
11、你熟练地掌握了指数函数和对数函数的图象与性质吗?
[问题]:已知函数上,恒有,则实数取值范围是: 。
12.你熟练地掌握了函数单调性的证明方法吗?(定义法、导数法)
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
[问题]:写出函数的图象及单调区间.时,求函数的最值.这种求函数的最值的方法与利用均值不等式求函数的最值的联系是什么?
[问题]:证明“函数的图象关于直线对称”与证明“函数与函数的图象关于直线对称”有什么不同吗?
例题讲解
1、忽略的存在:
例题1、已知A={x|},B={x|},若AB,求实数m的取值范围.
【错解】AB,解得:
【分析】忽略A=的情况.
【正解】(1)A≠时,AB,解得:;
(2)A= 时,,得.
综上所述,m的取值范围是(,
2、分不清四种集合:、、、的区别.
例题2、已知函数,,那么集合中元素的个数为…………………………………………………………………………( )
(A) 1 (B)0 (C)1或0 (D) 1或2
【错解】:不知题意,无从下手,蒙出答案D.
【分析】:集合的代表元,决定集合的意义,这是集合语言的特征.事实上,、、、分别表示函数定义域,值域,图象上的点的坐标,和不等式的解集.
【正解】:本题中集合的含义是两个图象的交点的个数.从函数值的唯一性可知,两个集合的交中至多有一个交点.即本题选C.
3、搞不清楚是否能取得边界值:
例题3、A={x|x<-2或x>10},B={x|x<1-m或x>1+m}且BA,求m的范围.
【错解】因为BA,所以:.
【分析】两个不等式中是否有等号,常常搞不清楚.
【正解】因为BA,所以:.
4、不理解有关逻辑语言:
例题4、“非空集合M的元素都是集合P的元素”是假命题,则以下四个命题:⑴M的元素都不是P的元素;⑵M中有不属于P元素;⑶M中有P的元素;⑷M的元素不都是P的元素,其中真命题的个数有……………………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)4个
【错解】常见错误是认为第(4)个命题不对.
【分析】实际上,由“非空集合M的元素都是集合P的元素”是假命题知非空集合M不是集合P的子集,故“M的元素不都是P的元素”(M的元素有的是、有的不是集合P的元素,或M的元素都不是P的元素)是正确的.
【正解】正确答案是B(2、4两个命题正确).
5、解集错误地写成不等式或不注意用字母表示的两个数的大小:
例题5、若a<0, 则关于x的不等式的解集是 .
【错解】x<-a或x >5 a
【分析】把解集写成了不等式的形式;没搞清5 a和-a的大小.
【正解】{x|x<5 a或x >-a }
6、不能严谨地掌握充要条件的概念:
例题6、题甲“a,b,c成等比数列”,命题乙“”,那么甲是乙的………………( )
(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又非必要条件
【错解】选C
【分析】若a,b,c成等比数列,则;若,则有可能.
【正解】正确答案为:D
7、考虑充要条件时,忽略了前提条件:
例题7、△ABC中,“A=B”是“sinA=sinB”的…………………………………( )条件
(A)充分不必要 (B)必要不充分 (C)充要 (D) 非充分非必要
【错解】错选A
【分析】实际上,由“A=B”能推出“sinA=sinB”;在△ABC中,由正弦定理及“sinA=sinB”,可知,从而有“A=B”成立.
【正解】正确答案为C.
8、不能正确地理解有关概念,导致推理错误:
例题8、已知直线m、n和平面、,其中m、n,则∥的一个充分不必要条件是:……………………………………………………………………………………( )
(A)⊥,⊥ (B) m∥, n∥
(C) ∥,∥ (D)内不共线的三点到的距离相等
【错解】错选A.
【分析】注意:寻找的是一个充分不必要条件.
学生往往错误地认为:∥某条件,且某条件不能推出∥.
而实际上,应该是:某条件∥,且∥不能推出某条件.
【正解】正确答案为C.
9、逻辑推理混乱:
例题9、使不等式成立的充分而不必要的条件是…………………( )
(A) (B)
(C) (D)
【错解】搞不清所要求的条件和不等式的关系.
【分析】所要求的“某条件”满足:(1)“某条件”不等式成立;
(2)“某条件”不等式成立;
【正解】正确答案为:B
10、不会用“等价命题”推理:
例题10、设命题p:|4x-3|≤1,命题q:,若p是q的必要而不充分条件,则实数a的取值范围是 .【错解】常见错误解答是:.
【分析】解答此题比较好的思路是:由p是q的必要而不充分条件得知p是q的充分而不必要条件,然后再解两个不等式,求a的取值范围.【正解】正确答案是.
11、不注意数形结合,导致解题错误.
例题11、曲线与直线有两个不同交点的充要条件是
【错解】误将半圆认为是圆.【分析】利用“数形结合”易于找到正确的解题思路.
【正解】可得正确答案为:
透过伪装抓本质—集合思想及集合语言在解题中的应用
集合是高中数学的基础,也是高考常考的内容之一。集合思想及集合语言可以渗透到高中数学的各个分支,它可与函数、方程和不等式等许多知识综合起来进行考查。在解题时首先需要我们能读懂集合语言,将集合语言转换为数学语言,再用相关的知识解决问题。本文将通过几个典型例题的剖析,与大家谈谈集合思想与集合语言与其它知识的综合应用。
一、集合与函数
例1、已知集合,,那么等于 ( )
A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.
解析:由代表元素可知两集合均为数集,又P集合中y是函数中的y的取值范围,故P集合的实质是函数的值域。而Q集合则为函数的定义域,从而易知,选D.
评注:认识一个集合,首先要看其代表元素,再看该元素的属性,从而确定其实质。
例2、已知A=,B=,若,求k的取值范围。
分析:A集合是函数的定义域,而B集合中的方程可简化为:
,故本题的题意是使方程有解的k的取值范围,显然即求函数的值域。
解:由,得A=,当
时,可得:,
∴ ∴A=[-3,0]
二、集合与方程
例3、已知,求实数p的取值范围。
剖析:集合A是方程x2+(p+2)x+1=0的解集,则由,可得两种情况:
A=φ,则由,得:
方程x2+(p+2)x+1=0无正实根。则或(x1x2=1>0)
于是
例4、已知集合,集合,其中x、t均为实数,求。
剖析:集合A是使方程x2+2tx-4t-3=0的解集为φ的t的取值范围,集合B是使方程x2+2tx-2t=0有解的t的取值范围,于是由,得.
三、集合与不等式
例5、已知集合A={a|ax2+4x-1≥-2x2-a恒成立},B={x| x2-(2m+1)x+m(m+1)<0},
若A∩B≠Φ,求实数m的取值范围。
分析:集合A是使不等式ax2+4x-1≥-2x2-a恒成立的a的取值范围,集合B是不等式x2-(2m+1)x+m(m+1)<0的解集,下面即可用相关知识解决。
解:由不等式ax2+4x-1≥-2x2-a恒成立,可得:(a+2)x2+4x+(a-1)≥0(★),
(1)当a+2=0时,即a=-2时,(★)式可化为x>3/4,显然不符合题意。
(2) 当a+2≠0时,欲使(★)式对任意x均成立,必需满足
,解之得A=。
又可求得B={x|m<x<m+1},结合数轴,可得:m>1.
四、集合与解几
例6、已知集合,如果,求实数a的取值范围。
剖析:从代表元素(x,y)看,这两个集合均为点集,又x2+mx-y+2=0及x-y+1=0是两个方程,故A∩B≠φ的实质为两个曲线有交点的问题,我们将其译成数学语言即为:“抛物线x2+mx-y+2=0与线段x-y+1=0(0≤x≤2)有公共点,求实数m的取值范围。”
解:由,得 ①
,方程①在区间[0,2]上至少有一个实数解.
首先,由.
当时,由x1+x2=-(m-1)<0及x1x2=1知,方程①只有负根,不符合要求;
当时,由x1+x2=-(m-1)>0及x1x2=1>0知, 方程①有两个互为倒数的正根,故必有一根在区间内,从而方程①至少有一个根在区间[0,2]内。
综上,所求m的取值范围是。
例7、已知集合,若,求实数a的值。
解:(1)当a=1时,集合B=Φ,符合题意。
(2)当a≠1时,易知A、B两集合均为点集,其中A集合为直线y=(a+1)(x-2)+3(x≠2)上的点集,B集合为直线上的点集,由,知两直线无公共点,故又有以下两种情况:
①若两直线平行,则-(a+1)=a+1 ∴a=-1
②若直线经过点(2,3),则,解之得:。
综上:
五、集合与导数
例7、已知,
A=,则B中的元素个数为
A.有3个 B.有2个 C.有且仅有1个 D.不存在
解:由导数的知识可知:A={x|x2-12x+20≤0}={x|2≤x≤10},
又,∴
当x∈A时,易知: ∴f(x)在区间[2,10]上为增函数
而可求得f(2)<0,f(10)>0, ∴方程f(x)=0在区间[2,10]上有且仅有一解。
即集合B中仅有一个元素。
练习:
已知, , 求
已知, , 求
已知, , 求B
(4)已知,,求M
集合学习中的错误种种
数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生.
一、混淆集合中元素的形成
例1集合,,则.
错解:解方程组得
剖析:产生错误的原因在于没有弄清楚集合中元素的形式,混淆点集与数集.集合中的元素都是有序数对,即平面直角坐标系中的点,而不是数,因而是点集,而不是数集.
二、忽视空集的特殊性
例2已知,,若,则的值为.
错解:由得
由得或
或3 或
剖析:由于忽视空集的特殊性――空集是任何集合的子集,产生丢解的错误,以上只讨论了的情形,还应讨论的情形,当时,.
的值为.
三、忽视集合中的元素的互异性这一特征
例3已知集合,,且,求的值.
错解:,必有
或
剖析:由于忽视集合中元素应互异这一特征,产生增解的错误.求出的值后,还必须检验是否满足集合中元素应互异这一特征.
事实上,(1)当时,,不满足中元素应互异这一特征,故应舍去.
(2)当时,,满足且集合中元素互异.
的值为1.
四、没有弄清全集的含义
例4设全集,,求的值.
错解:且
或
剖析:没有正确理解全集的含义,产生增解的错误.全集中应含有讨论集合中的一切元素,所以还须检验.
(1)当时,,此时满足.
(2)当时,,应舍去,.
五、没有弄清事物的本质
例5若,,试问是否相等.
错解:
剖析:只看到两集合的形式区别,没有弄清事物的本质,事实上是偶数集,也是偶数集,两集合应相等,尽管形式不同.
换句话说,
两集合中所含元素完全相同,
六、误用数学符号
例6用,填空
错解:
错误的原因在于没有弄清符号“”与“”之间的区别
“”表示元素与集合之间的关系,“”表示集合与集合之间的关系,表示集合,亦是集合,.
集合中的数学思想方法例析
数学思想和数学方法是数学的灵魂,是知识转化为能力的桥梁,信息社会越来越多的要求人们自觉地运用数学思想提出问题和用数学方法解决问题.近几年的高考数学试题,越来越注重对数学思想和数学方法的考查,这已成为高考热点问题.为帮助同学们更好地理解和掌握最常用的基本数学思想和数学方法,特结合同学们已经学过的集合中有关的数学思想方法要点归纳如下,以扩大读者的视野.
一、等价转化思想
在解集合问题时,当一种集合的表达式不好入手时,可将其先转化为另一种形式.比如:将= B或将= A转化为,将转化为,将转化为等.
例1 已知M ={(x,y)| y = x+a},N ={(x,y)| x+y= 2},求使得=成立的实数a的取值范围。
解:=等价于方程组无解。
把y = x+a代入方程x+y= 2中,消去y,得关于x的一元二次方程2x+2ax+a-2= 0。①
问题又转化为一元二次方程①无实根,即△= (2a)-4×2×(a-2)<0,由此解得a>2或a<-2。
故所求实数a的取值范围是{a | a>2或a<-2。
评析:在理解集合符号的基础上,准确地将集合语言转化为初中已学过的数学问题,然后用所学的知识和方法把问题解决.这种转化可以把抽象知识用简洁、准确的数学语言表达出来,提高解题效率.
二、分类讨论思想
解答集合问题时常常遇到这样的情况:解题过程中,解到某一步时,不能再以统一的方法、统一的形式继续进行,因为这时被研究的数学对象已包含了多种可能的情形,必须选定一个标准,根据这个标准划分成几个能用不同形式去解决的小问题,将这些小问题一一加以解决,从而使问题得到解决,这就是分类讨论的思想方法.
例2 设集合A = {x | x+4x = 0,xR},B = {x | x+2(a+1)x+a-1= 0,aR,xR },若,求实数a的取值范围。
分析:BA可分为B =,BA,B = A三种情况讨论。
解:∵A = {0,-4},∴BA分以下三种情况:
⑴当B = A时,B= {0,-4},由此知:0和-4是方程x+2(a+1)x+a-1= 0的两个根,由根与系数之间的关系,得:
a = 1。
⑵当BA时,又可分为:
①B =时,△= 4(a+1)-4(a-1)<0,解得a<-1;
②B≠时,B = {0}或B = {-4},并且△= 4(a+1)-4(a-1) = 0,解得a=-1,此时B = {0}满足题意。
综合⑴、⑵知,所求实数a的值为a≤-1或a = 1。
评析:解分类讨论问题的实质是将整体化为部分来解决。对于含参数的计划问题,常需要对参数分类讨论。在分类时要注意“不重不漏”。由于空集是任何非空集合的真子集,空集必是非空集合的真子集,因此,B =φ时也满足BA.所以BA中就应考虑B =与B≠两种情况,就是说,正是空集引法的分类讨论.
三、开放思想
开放型问题是相对于中学课本中有明确条件和结论的封闭型问题而言的.这类问题的知识覆盖面大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度.集合中的开放型问题问题大多是结论不定性开放型问题.
例3 设集合A = {(x,y)|y-x-1= 0 },集合B ={(x,y)| 4x+2x-2y+5 = 0 },集合C ={(x,y)| y = kx+b },是否存在k,bN,使得?若存在,请求出k,b的值;若不存在,请说明理由.
解:因为,即,所以且.
将y = kx+b代入y-x-1= 0,得kx+(2kb-1)x+b-1= 0,
因为,所以△= (2kb-1)-4k( b-1)<0,即4k-4kb+1<0,若此不等式有解,应有16b-16>0,即b>1.①
又将y = kx+b代入4x+2x-2y+5 = 0,得:4x+(2-2k)x+(5-2b) = 0,
因为,所以△= (2-2k)-4k(5-2b)<0,即k-2k+8b-19<0,若此不等式有解,应有4-4(8b-19)>0,解得b<.②
由不等式①、②及bN,得b = 2.
将b = 2代入由△<0和△<0组成的不等式组,得,再注意到kN,求得k = 1.
故存在自然数k = 1,b = 2使得.
评析:在数学命题中,常以适合某种性质的结论“存在(肯定型)”、“不存在(否定型)”、“是否存在(讨论型)”等形式出现.“存在”就是有适合某种条件或符合某种性质的对象,对于这类问题无论用什么方法只要找出一个,就说明存在.“不存在”就是无论用什么方法都找不出一个适合某种已知条件或性质的对象,这类问题一般需要推理论证.“是否存在”结论有两种:一种是可能或存在;另一种是不存在,则需要说明理由.
集合解题八项注意
解集合问题时,若对集合的基本概念理解不透彻,或思考不全面,常常致错,为此,本文对集合解题时提出“八项”注意,希望引起同学们的重视。
1. 注意集合中元素的互异性
集合中任何两个元素都是不同的,相同元素归入同一集合时只能算作一个元素,因此集合中元素是没有重复的,忽视互异性会引出错解。
例1. ,求实数a的值。
错解:由题意知:
即
分析:,这与集合元素的互异性相矛盾,舍去。
2. 注意集合元素的含义
集合中元素是有一定意义的,对此,稍有疏忽就会导致解题失误。
例2. 设,,则_____。
错解:由方程组解得:
故
分析:导致错误的原因是没有正确理解集合元素的含义,A、B中的元素是有序数对,即表示平面直角坐标系中的点,故
3. 注意的特殊性
是任何集合的子集,是任何非空集合的真子集,与任何集合的并集等于集合本身,忽视它的特殊性,同样会造成解题错误。
例3. 已知集合,若,求由实数a组成的集合C。
错解:因为所以
即,所以
分析:导致错误的原因是漏掉的情形,当时,亦满足条件,可得:
4. 注意字母的取值范围
当参数包含于多个元素的表达式时,运算过程中容易扩大参数的取值范围,应注意检验,否则会发生错解。
例4. 已知集合,且
,求实数a的值。
错解:由,知
分析:当时,
此时矛盾,应舍去。
5. 注意取等的可能性
例5. 已知,,且,求实数a的取值范围。
分析:由已知得:
注:不要忽略的情况。
6. 注意分类讨论的重要性
例6. 已知集合,若,求实数a和b的值。
分析:因为,故,故B中含一个或两个元素,通过讨论,可求出:
7. 注意隐含条件
例7. 全集,求实数a的值。
错解:因为
所以从而解得:
分析:导致错误的原因是没有考虑到隐含条件,因为S是全集,所以。
当,符合题意;
当时,,不符合题意,故。
注:在解有关含参数的集合题时,需要进行验证结果是否满足题中的条件(包含隐含条件)。
8. 回到定义,也是一法
在遇到难入手的题目时,有时回到定义上来,反而变简单了。
例8. 设,且则S为( )
分析:由题意,可求出集合M和N,从而求出p,q,r。
由故解得
由
故又由
例1、已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y2-6y+8≤0},若A∩B≠φ,求实数a的取值范围。
分析:本题若直接去解,情形较复杂,也不容易求得正确结果,若我们先考虑其反面,再求其补集,同样也可以求解。
解:易解得A={y|y>a2+1或y<a}, B={y|2≤y≤4},我们不妨先考虑当A∩B=φ时a的
范围。如图
由,得
∴或.
即A∩B=φ时a的范围为或.而A∩B≠φ时a的范围显然是其补集,从而,易知所求范围为.
评注:一般地,我们在解时,若正面情形较为复杂,我们就可以先考虑其反面,再利用其补集,求得其解,这就是“补集思想”。
例2、若下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0, x2+2ax-2a=0中至少有一个方程有实根,试求实数a的取值范围。
分析:本题的正面有七种情形需要考虑,而其反面只有一种,即“三个方程均无实根”。故先考虑其反面是捷径。
解:若三个方程均无实根,则有
。设A=
于是三个方程至少有一个方程有实根的实数a的取值范围为
例3、若x、y、z均为实数,且,求证:a、b、c中至少有一个大于0.
分析:本题直接证明不仅情形较多,而且难于找到思路。若我们能够证明其反面不能成立,则就能肯定其正面成立。
证明:假设a、b、c均小于等于0,则a+b+c≤0,
又a+b+c=x2-2y+y2-2z+z2-2x+π=(x-1)2+(y-1)2+(z-1)2+π-3>0恒成立∴假设错误,故原命题成立,即a、b、c中至少有一个大于0.