当前位置:首页 » 语数英语 » 高中数学必修四向量

高中数学必修四向量

发布时间: 2020-11-20 01:55:38

⑴ 高中数学必修四平面向量

肯定不是笨,努力错了方向,与高考规则背道而驰,涨分当然困难专。我高一中下等生到考上属北大,得益于一套“高考必考、常考题型清单”,只用40%的精力,能拿下90%的分数! 比如您孩子数学不好,刷再多题都没用,因为高中数学3002个知识点,高考只考259个核心考点。我把题型整理到“高考必考、常考题型清单”里,做完这套清单,数学能轻松拿下120分,而考生只需要15个小时,效率远超盲目刷题。 在我10年教学中,题型清单的效果已得到验证,连续4年押中90%题型,最快1个月提高55分。想让

⑵ 高一数学必修4步步高向量分层训练答案

1.绝对经典三角函数难题: 求sin10sin20…sin90,注意都是度,这里不好打印。 提示:利用三倍角公式sin3x=4sinxsin(60-x)sin(60+x),然后取x分别为10度,20度,30度,两边相乘即可计算。 2.超级启发式平面向量题: 设a,b是平面向量,定义向量外积为a*b=|a||b|sin@,@为a,b夹角。 (1)若a=(x1,y1),b=(x2,y2),求证|a*b|=|x1y2-x2y1|; 提示:仿造书上内积坐标公式的证明。 (2)利用上面的结论,证明向量a,b共线的充要条件是x1y2-x2y1=0; (3)已知三角形三顶点坐标,求三角形面积。 提示:设A,B,C为三角形顶点,求出向量AB,AC坐标,注意到三角形ABC的面积为AB与AC外积绝对值的1/2,再利用第一问向量外积坐标公式即得。 PS:如果有兴趣可以把内积的结论的推导方法都用到外积上来,看看还会得到什么样的结论。

⑶ 我想知道为什么高中数学必修四把平面向量和三角函数放一起学,简单说一下就好,谢谢

一个三角函数,它的一个周期实际上就是一个向量从一个点开始逆时针旋转一周又回到这个点。
比如单位向量从x轴正方向开始逆时针旋转30°,这个时候它的坐标是(√3/2,1/2),也就是(cos30°,sin30°);旋转45°,这个时候它的坐标是(√2/2,√2/2),也就是(cos45°,sin45°)。那旋转270°,坐标就是(0,-1),也就是(cos270°,sin270°),以此类推。

⑷ 高中数学必修四,第二章平面向量涉及的所有公式

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
② 当且仅当a、b反向时,右边取等号。

定比分点

定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.

⑸ 高一数学必修4有关向量的所有公式(是所有有关哟)!分数诱人……

设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。向量的加法
AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被向量的减法
减” a=(x,y)b=(x',y') 则a-b=(x-x',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向;向量的数乘
当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x'+y·y'。 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a垂直b〈=〉a×b=|a||b|。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); a×(b+c)=a×b+a×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。
6、三向量的混合积
定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,向量的混合积
所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c 混合积具有下列性质: 1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0 3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb) 4、(a×b)·c=a·(b×c)
7、三向量的二重向量积
由于二重向量叉乘的计算较为复杂,于是直接给出了下列化简公式以及证明过程: 二重向量叉乘化简公式及证明

向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。
定比分点公式(向量P1P=λ·向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个任意实数 λ且λ不等于-1,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)/(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
向量共线的条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 若设a=(x1,y1),b=(x2,y2),则有x1y2=x2y1。 零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是 a·b=0,即x1x2+y1y2=0。 零向量0垂直于任何向量. 平面向量的分解定理 平面向量分解定理:如果e1、e2是同一平面内的两个不平行向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使 a=λ1e1+λ2e2 我们把不平行向量e1、e2叫做这一平面内所有向量的一基组.

⑹ 高一数学必修四

东北三省一般是14523的顺序,学习必修,别的省都是1234的顺序来学习必修四主要内容是三角函数向量和三角恒等变换

⑺ 求高中数学必修四的目录!

必修四
第一章 三角函数
§1 周期现象
§2 角的概念的推广
§3 弧度制
§4 正弦函数和余弦函数的定义与诱导公式
4.1任意角的正弦函数、余弦函数的定义
4.2单位圆与周期性
4.3单位圆与诱导公式
§5 正弦函数的性质与图像
5.1从单位圆看正弦函数的性质
5.2正弦函数的图像
5.3正弦函数的性质
§6 余弦函数的图像和性质
6.1余弦函数的图像
6.2余弦函数的性质
§7 正切函数
7.1正切函数的定义
7.2正切函数的图像和性质
7.3正切函数的诱导公式
§8 函数 的图像
§9 三角函数的简单应用
第二章 平面向量
§1 从位移、速度、力到向量
1.1位移、速度和力
1.2向量的概念
§2 从位移的合成到向量的加法
2.1向量的加法
2.2向量的减法
§3 从速度的倍数到数乘向量
3.1数乘向量
3.2平面向量基本定理
§4 平面向量的坐标
4.1平面向量的坐标表示
4.2平面向量线性运算的坐标表示
4.3向量平行的坐标表示
§5 从力做的功到向量的数量积
§6 平面向量数量积的坐标表示
§7 向量应用举例
7.1点到直线的距离公式
7.2向量的应用举例
第三章 三角恒等变形
§1 同角三角函数的基本关系
§2 两角和与差的三角函数
2.1两角差的余弦函数
2.2两角和与差的正弦、余弦函数
2.3两角和与差的正切函数
§3 二倍角的三角函数

⑻ 求解:高中数学必修四有关向量的题目

设源 |PA|=x,则 |PB|=√2 - x,
PD*PC=(PA+AD)*(PB+BC)
=PA*PB+AD*BC
= -x(√2-x)+2
=(x - √2/2)² + 3/2,
因此,当 x=√2/2 (即 P 是 AB 中点) 时,
所求最小值为 3/2 。

⑼ 高中数学必修4平面向量中 三点共线满足什么条件

比如ABC三点
向量AB=λ向量BC
λ唯一(当然这里不能为0,否则三点没意义了)

⑽ 高一数学求高手,必修4向量知识

不懂就HI我

热点内容
口耳目教学设计 发布:2025-06-16 19:18:33 浏览:741
正丁醇物理性质 发布:2025-06-16 19:08:59 浏览:546
探究生物实验 发布:2025-06-16 18:46:24 浏览:730
流体力学教学视频 发布:2025-06-16 18:45:37 浏览:474
师德师风问题整改台帐 发布:2025-06-16 17:04:31 浏览:523
119安全教育平台 发布:2025-06-16 15:29:18 浏览:355
高效语文 发布:2025-06-16 13:54:08 浏览:934
兵团教师资格证书领取 发布:2025-06-16 11:14:58 浏览:501
师德师风演讲评分表 发布:2025-06-16 11:14:13 浏览:628
植物园的历史 发布:2025-06-16 11:11:22 浏览:979