初一上学期数学试卷
⑴ 人教版初一上册数学试题
2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 。
2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。
5、当a=-2时,代数式 的值等于 。
6、代数式2x3y2+3x2y-1是 次 项式。
7、如果4amb2与 abn是同类项,那么m+n= 。
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。
9、如果∣x-2∣=1,那么∣x-1∣= 。
10、计算:(a-1)-(3a2-2a+1) = 。
11、用计算器计算(保留3个有效数字): = 。
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。
2,6,7,8.算式 。
13、计算:(-2a)3 = 。
14、计算:(x2+ x-1)•(-2x)= 。
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5
21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-
22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?
23、已知:A=2x2-x+1,A-2B = x-1,求B
四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积
25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:
26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)
27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。
求:(1)所有队员赠送的礼物总数。(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?
28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?
2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)
21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)
22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)
23、解: A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)
24、解:(1) (2’)
(2) (2’)
(3) + - - = (3’)
25、解:(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)
26、解:(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。
27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)
28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%。 (1’)
⑵ 初一数学上册期末试卷及答案
一、选择题(每小题1分,共10分)
1. 下列关于单项式 的说法正确的是( )
A. 系数是3,次数是2 B. 系数是 次数是2
C. 系数是 ,次数是3 D. 系数是- ,次数是3
2. 下列事件中,不确定事件的个数为 ( )
①若x是有理数,则
②丹丹每小时可以走20千米
③从一副扑克牌中任意抽取一张,这张扑克牌是大王。
④从装有9个红球和1个白球的口袋中任意摸出一个球,这个球是红球
A. 1个 B. 2个 C. 3个 D. 4个
3. 要把人类送上火星,还有许多航天技术问题需要解决,如:已知一个成年人平均每年呼吸氧气6.57× 升,而目前飞船飞往火星来回一趟需2年时间,如果飞船上有3名宇航员,那么来回一趟理论上需要氧气( )克,(氧气是1.43克/升,结果用科学记数法表示,保留三位有效数字)
A. B. C. D.
4. 钝角三角形的三条高所在直线的交点在( )
A. 三角形内 B. 三角形外 C. 三角形边上 D. 不能确定
5. 下列不能用平方差公式计算的是( )
A. B.
C. D.
6. 在西部山区有位希望中学的学生站在镜子面前,那么他的校徽在镜子里的成像是( )
7. 小马虎在下面的计算中,只做对了一道题,他做对的题目是( )
A. B.
C. D.
8. 在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为( )
A. 80° B. 50° C. 100° D. 130°
9. 如下的四个图中,∠1与∠2是同位角的有( )
① ② ③ ④
A. ②③ B. ①②③ C. ①②④ D. ①
10. 一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系用图像表示为( )
二、填空题(每小题2分,共20分)
1. 多项式 有( )项,次数为( )次.
2. 下列数据是近似数的有( )。(填序号)
①小红班上有15个男生:
②珠穆朗玛峰高出海平面8844.43米。
③联合国2001年2月27日曾发表了一项人口报告,说今后5年内全球预计有1550万人死于艾滋病,现在看来不止这个数目。
④玲玲的身高为1.60米。
3. 观察下面的平面图形,其中是轴对称图形的是( )。(填序号)
4. 一个均匀小立方体的6个面上分别标有数字1,2,3,4,5,6,任意掷出这个小立方体,则掷出数字是3的倍数的概率是( )。
5. 如图,扇形OAB的半径为10,当扇形圆心角的度数变化时,扇形的面积也随之变化,在这个变化过程中,自变量是( ),因变量是( )。
6. 一个圆的半径为r,另一个圆的半径是这个圆的半径的5倍,这两个圆的周长之和是( )。
7. 有长度为2厘米,6厘米,8厘米,9厘米的四条线段,选择其中三条组成三角形,有( )种组成方法。
8. 如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,如果∠EOF= ∠AOD,
则∠EOF=( )度。
9. 如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=70°,∠C=40°,则
∠DAE=( )度,∠AEC=( )度.
10. 如图是小明用火柴搭的1条、2条、3条“金鱼” ,按此规律,则搭第n条“金鱼”时需要火柴( )根。(第一条鱼用了8根火柴)。
三、(每题7分,共14分)
1. 计算:
2. 先化简,在求值:
,其中
四、(第1题6分,第2题8分,共14分)
1. 如图,在由小正方形组成的L形图形中,请你用三种不同方法分别在下面图形中添画一个小正方形使它成为轴对称图形。
2. 如图,是经专家论证得出来的某市新开发的海港2007-2011年的港口吞吐量规划统计图。
(1)(4分)看图,简述该港五年规划的特征:(写出两点即可)
(2)(4分)海港开发将有力拉动该市的经济发展,如果每万吨吞吐量能给该市带来10万元的收入,按规划五年内海港共给该市财政增加多少亿元的收入?
五、(第1题7分,第2题8分,共15分)
1. 小东找来一张挂历画包数学课本。已知课本长a厘米,宽b厘米,厚c厘米,小东想在包课本的封面与封底时,书皮每一边都折进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?
2. 下图是某厂一年的收入变化图,根据图像回答,在这一年中:
①(4分)什么时候收入最高?什么时候收入最低?最高收入和最低收入各是多少?
②(1分)6月份的收入是多少?
③(1分)哪个月的收入为400万元?
④(1分)哪段时间收入不断增加?
⑤(1分)哪段时间收入不断减少?
六、(8分)如图,已知∠1+∠2=180°,∠A=∠C,试说明AF‖CE
七、(8分)甲、乙两人想利用转盘游戏来决定谁在今天值日。如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,若指针指向红色区域,则甲值日,否则,乙值日。此游戏对甲乙双方公平吗?为什么?
八、(11分)如图1,2,四边形ABCD是正方形(AD=AB,∠A=90°,∠ABC=∠CBM=90°)M是AB延长线上的一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
(1)(9分)当点E在AB边的中点位置如图1时,连接点E与AD边的中点N,试说明NE=BF;
(2)(2分)当点E在AB边的任意位置如图2时,N在线段AD的什么位置时,NE=BF?不必说明理由。
图1 图2
【试题答案】
一、选择题
1. D 2 . B 3. C 4. B 5. C 6. B 7. D 8. D 9. C 10. B
二、填空题
1. 4 4 2. ②③④ 3. ①②③
4. 5. 扇形圆心角的度数 扇形的面积
6. 7. 2 8. 30°
9. 15 105 10. 8+6(n-1)
三、
1. -1
2. 原式= ,当a=-1,b=-2时,原式= -16
四、
1.
2. (1)吞吐量逐年增加,起始三年增长速度慢,后两年增长速度较快,2011年吞吐量是2007年的3倍。
(2)16亿元。
五、
1.
2. (1)12月份最高,收入500万元,8月份收入最低,收入100万元。
(2)200万元
(3)1月份
(4)8月——12月
(5)1月——8月。
六、因为 ∠1+∠2=180°
所以DC‖AB
所以∠A=∠FDC
又因为∠A=∠C
所以∠FDC=∠C
所以AF‖CE
七、公平。 ,
八、(1)因为∠NDE+∠AED=90°, ∠BEF+∠AED=90°
所以∠NDE=∠BEF
因为BF平分∠CBM
所以∠EBF=90°+45°=135°,
因为AN=AE
所以∠ANE=∠AEN=45°
∠DNE=180°-∠ANE=135°
所以∠EBF=∠DNE
又DN=EB
所以△DNE≌△EBF
所以NE=BF
(2)当DN=EB时。
⑶ 初一上册数学期中试卷新人教版
2012人教版七年级上册数学期中考试试卷(含答案)
题 号 一 二 三 总 分
得 分
一、填得圆圆满满(每小题3分,共30分)
1.-1-(-3)= 。
2.-0.5的绝对值是 ,相反数是 ,倒数是 。
3.单项式 的系数是 ,次数是 。
4.若逆时针旋转90o记作+1,则-2表示 。
5.如果a、b互为相反数,x、y互为倒数,那么(a+b) -xy+a2-b2= 。
6.在数轴上,点A表示数-1,距A点2.5个单位长度的点表示的数是 。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。将这个数字用科学计数法表示并保留三个有效数字为 元。
8.长方形的长是a米,宽比长的2倍少b米,则宽为 米。
9.若m、n满足 =0,则
10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为
二、做出你的选择(每小题3分,共30分)
11.如果向东走2km记作+2km,那么-3km表示( ).
A.向东走3km B.向南走3km C.向西走3km D.向北走3km
12.下列说法正确的是( C )
A.x的系数为0 B. 是一项式 C.1是单项式 D.-4x系数是4
13.下列各组数中是同类项的是( )
A.4x和4y B.4xy2和4xy C.4xy2和-8x2y D.-4xy2和4y2x
14.下列各组数中,互为相反数的有( )
① ② ③ ④
A.④ B.①② C.①②③ D.①②④
15.若a+b<0,ab<0,则下列说法正确的是( )
A.a、b同号 B.a、b异号且负数的绝对值较大
C.a、b异号且正数的绝对值较大 D.以上均有可能
16.下列计算正确的是( )
A.4x-9x+6x=-x B.xy-2xy=3xy
C.x3-x2=x D. a- a=017.数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是( )
A. -6 B. 2 C. -6或2 D.都不正确
18.若 的相反数是3, ,则x+y的值为( ).
A.-8 B. 2 C. 8或-2 D.-8或2
19.若 3x=6,2y=4则5x+4y 的值为( )
A.18 B.15 C.9 D. 6
20.若-3xy2m与5x2n-3y8的和是单项式,则m、n的值分别是( )
A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3
三、用心解答(共60分)
21.(16分)计算
(1) -26-(-15) (2)(+7)+(-4)-(-3)-14
(3)(-3)× ÷(-2)×(- ) (4)-(3-5)+32×(-3)
22.解方程(本题8分)
(1)x+3x= -12 (2)3x+7=32-2x
23.(6分)将下列各数在数轴上表示出来,并用“<”连接:
-22, -(-1), 0, , -2.5
24.(6分)若a是绝对值最小的数,b是最大的负整数。先化简,再求值:
25.(6分)列方程解应用题。
把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。这个班有多少名学生?
26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n S
1 2 = 1×2
2 2+4 = 6 = 2×3
3 2+4+6 = 12 = 3×4
4 2+4+6+8 = 20 = 4×5
5 2+4+6+8+10 = 30 = 5×6
(1)若n=8时,则 S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:
S=2+4+6+8+…+2n=____________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100 的值.
七年级数学试题答案
一填得圆圆满满(每小题3分,共30分)
1、2 2、0.5 ,0.5,-2 3、 ,3 4、顺时针旋转180o 5、-1 6、-3.5或1.5 7、3.50×106
8、2a-b 9、9 10、3x-13=125
二.做出你的选择(每小题3分,共30分)
11、C 12、C 13、D 14、B 15、D 16、D 17、B 18、D 19、A 20、C
三、用心解答(共60分)21、(16分)(1)-11 (2)8
(3)- (4)-25
22、(8分)(1)x=-3 (2)x=25
23、(6分)-22<-2.5<0<-(-1)<
24、(6分)解:由题意,得 a=0,b=-1
原式=2a2-4ab-2b2-a2+3ab+3b2
=a2-ab+b2
当a=0,b=-1时, 原式=(-1)2=1
25、(6分)这个班有45名学生
26、(9分)解:(1)-2+5-1+1-6-2=-5
答:小李在起始的西5km的位置
(2)
=2+5+1+1+6+2=17 17×0,2=3.4
答:出租车共耗油3.4升
(3)6×8+(2+3)×1.2=54
答:小李这天上午共得车费54元。
27、(9分)(1)72; (2) ;
(3)2+4+6+8+10+…+98+100=50×51=2550
⑷ 七年级上册数学试题
七年级下数学期末测试题
一、选择题:(每小题3分,共30分)
1.化简 的结果是( ).
A.0 B. C. D.
2.如果实数x,y,满足 ,那么 的值等于( ).
A. B. C.-4 D.4
3.以下语句是命题的是( ).
A.以C点作AB的平行线
B.连结AB
C.如果一个数能被3整除,那么它的末位数一定是3
D.直线上两点和它们之间的部分叫线段吗?
4.如图1,射线OA表示的方向为( ).
图1
A.北偏东30° B.北偏西30°
C.西偏北30° D.东偏北30°
5.如果两条平行线和第三条直线相交,那么一组同旁内角的平分线互相( ).
A.垂直 B.平行
C.重合 D.相交但不垂直
6.下列运算结果为负数的是( ).
A. B.
C. D.
7.用科学记数法表示0.00032,正确的是( ).
A. B.
C. D.
8. 是一个完全平方式,则m的值等于( ).
A.36 B.12 C.-12 D.12或-12
9.如图2所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有( ).
图2
A.2个 B.3个 C.4个 D.1个
10.若 ,且p>0,q<0,那么a、b必须满足的条件是( ).
A.a、b都是正数 B.a、b异号,且正数的绝对值较大
C.a、b都是负数 D.a、b异号,且负数的绝对值较大
二、判断题:(每小题2分,共10分)
1. ; ( )
2.相等的角是对顶角; ( )
3. ; ( )
4. ; ( )
5.若 , ,则 . ( )
三、填空题:(每小题2分,共14分)
1. ________;
2.已知被除式是 ,商式是 ,余式是-1,则除式为________;
3.不等式 的解集为________;
4.一个角的补角比这个角的余角大________;
5.如图3,直线a、b被直线AB所截,∠1=∠2,且a‖b,若∠ABC=60°,则∠1=________;
6.①89°48′36〃=________°; ②127°20′÷5=________;
7.若线段AB长为a cm,延长AB到C,使BC=2AB,D为线段AC的中点,则线段CD长为________.
四、解答题:
1.计算:(每小题4分,共12分)
(1) ;
(2) ;
(3) .
2.解方程:(4分)
.
3.解方程组:(4分)
4.求不等式(2x-3)(2x+3)>4(x-2)(x+3)的正整数解.(5分)
5.求不等式组的解集,并在数轴上表示解集.(5分)
6.有一批零件共420个,甲先做2天,乙加入合作,再作2天完成;若乙先做2天,甲加入合作,再做3天完成,求甲、乙二人每天各做多少个零件.
7.已知:线段a、b,如图4,用直尺,圆规画一线段,使它等于2a-b.
图4
8.已知角 与角 互补,并且 的 比 小于20°,求 、 的大小.
9.已知:如图5,∠1=∠2,∠3=∠4.
求证:AC平分∠BAD.
图5
参考答案
一、1.B 2.B 3.C 4.B 5.A 6.D 7.A 8.D 9.B 10.B
二、1.√ 2.× 3.√ 4.× 5.×
三、1. 2. 3. 4.90° 5.60°
6.①89.81 ②25°28′ 7.
四、1.(1)4 (2) (3)
2.x=-1 3. 4.x=1、2、3 5.-7≤x<2
6.甲做90个,乙做30个 7.略 8.120°,60°
9.证CD‖AB,∴ ∠3=∠BAC,又∵ ∠3=∠4,∴ ∠4=∠BAC,∴ AC平分∠BAD
⑸ 七年级上册数学期末试卷及答案
2008-2009学年度第一学期七年级期末数学试卷
(考试时间为100分钟,试卷满分为100分)
班级__________ 学号___________ 姓名___________ 分数____________
一、选择题(每题3分,共36分)
1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
①相反数等于本身的数只有0; ②倒数等于本身的数只有1;
③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;
A.只有③ B. ①和② C.只有① D. ③和④
3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )
A.437℃ B.183℃ C.-437℃ D.-183℃
4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )
A.5.475*10^11 B. 5.475*10^10
C. 0.547*10^11 D. 5.475*10^8
5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )
A.这两个加数的符号都是正的 B.这两个加数的符号都是负的
C.这两个加数的符号不能相同 D.这两个加数的符号不能确定
7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )
A.1个 B.2个 C.3个 D.4个
8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。
A.4x+3y B.2x-y C.-2x+y D.7x-5y
9.下列方程中,解是-1/2的是()
A.x-2=2-x B.2.5x=1.5-0.5x C.x/2-1/4=-5/4 D.x-1=3x
11.甲乙两要相距 m千米,原计划火车每小时行x 千米,若每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )小时。
A. m/50 B. m/x C. m/x-m/50 D. m/50-m/x
12.我们平常的数都是十进制数,如2639=2*10^3+6*10^2+3*10+9 ,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只有两个数码0和1.如二进制数 101=1*2^+0*2^1+1=5,故二进制的101等于十进制的数5,那么二进制的110111等于十进制的数( )
A.55 B.56 C.57 D.58
二、填空题(每小题2分,共16分)
13.大于-2 而小于1的整数有________ 。
14.若一个数的平方是9,则这个数的立方是________。
15.计算:10+(-2)*(-5)^2=_________ 。
16.近似数2.47万是精确到了_________ 位,有________个效数字。
17.若代数式 2x-6与-0.5 互为倒数,则x=______ 。
18.若2*a^3n 与 -3*a^9之和仍为一个单项式,则a=_______ 。
四、列方程解应用题(共13分)
29.(本题4分)甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.
30.(本题4分)青藏铁路的通车是几代中国人的愿望.在这条铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是每小时100千米,在非冻土地段的行驶速度可以达到每小时120千米,在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段约多用O.77小时.如果通过非冻土地段需要 t小时,
(1)用含有 t的代数式表示非冻土地段比冻土地段长多少千米?
(2)若格尔木到拉萨路段的铁路全长是1118千米,求t (精确到O.O1)及冻土地段的长(精确到个位).
31.(本题5分)某年级利用暑假组织学生外出旅游,有10名家长代表随团出行,甲旅行社说:“如果10名家长代表都买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括10名家长代表在内,全部按票价的6折(即按全标的60%收费)优惠”,若全票价为40元,
(1)如果学生人数为30人,旅行社收费多少元?如果学生人数为70人,旅行社收费多少元?
(2)当学生人数为多少时,两家旅行社的收费一样?
(3)选择哪个旅行社更省钱?
五、探究题(共3分)
32.设a,b,c为有理数,在有理数的乘法运算中,满足;
(1)交换律 a*b=b*a;(2)对加法的分配律(a+b)*c=a*c+b*c 。
现对a&b 这种运算作如下定义: a&b=a*b+a+b
试讨论:该运算是否满足(1)交换律?(2)对加法的分配律?通过计算说明。
六、附加题(共6分,记入总分,但总分不超过100分。)
33.(本题3分)证明:1/3<=1/(1*3)+1/(3*5)+------+1/[(2n-1)*(2n+1)] <1/2,(n 为正整数)。
34.(本题3分)
关于 x的方程 ||x-2|-1|=a有三个整数解,求 a的值。
说明:由于原卷中大部分数字和字母都使用了公式编辑器,所以无法显示,我对部分题目做了修改,有的题目实在不好打了,我就删掉了,还请见谅。
⑹ 初一上学期数学试题(包答案)
七年级上期期末数学模拟测试
一、耐心填一填(每小题3分,共30分)
1.-3和-8在数轴上所对应两点的距离为_________.
2.将图中所示几何图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则应剪去的正方形是_________.
3.平方为0.81的数是________,立方得-64的数是_________.
4.在学校“文明学生”表彰会上,6名获奖者每位都相互握手祝贺,则他们一共握了______次手,若是n位获奖者,则他们一共握了_____次手.
5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有________个交点.
6.太阳的半径为696000 000米,用科学记数法表示为___________米.
7.袋中装有5个红球,6个白球,10个黑球,事先选择要摸的颜色,若摸到的球的颜色与事先选择的一样,则获胜,否则就失败.为了尽可能获胜,你事先应选择的颜色是_________.
8.当x=_______时,代数式2x+8与代数式5x-4的值相等.
9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,则这种服装每件的成本价________元.
10.代数式3a+2的实际意义是_________.
二、精心选一选(每小题3分,共30分)
11.绝对值小于101所有整数的和是( )
(A)0 (B)100 (C)5050 (D)200
12.数轴上表示整数的点为整点,某数轴上的单位长度是1厘米,若在这个数轴上随意放一根长为2005厘米的木条AB,则木条AB盖住的整点的个数为( )
(A)2003或2004 (B)2004或2005
(C)2005或2006 (D)2006或2007
13.如图,某种细胞经过30分钟便由1个分裂成2个,若这种细胞由1个分裂成16个,那么这个过程要经过( )
(A)1.5小时; (B)2小时;(C)3小时;(D)4小时
14.用一个平面去截一个几何体,截面不可能是三角形的是( )
(A)五棱柱 (B)四棱柱 (C)圆锥 (D)圆柱
15.用火柴棒按下图中的方式搭图形,则搭第n个图形需火柴棒的根数为( )
(A)5n (B)4n+1 (C)4n (D)5n-1
16.在直线上顺次取A、B、C三点,使得AB=9cm,BC=4cm,如果点O是线段AC的中点,则OB的长为( )
(A)2.5cm (B)1.5cm (C)3.5cm (D)5cm
17.当分针指向12,时针这时恰好与分针成120°角,此时是( )
(A)9点钟 (B)8点钟 (C)4点钟 (D)8点钟或4点钟
18.如果你有100万张扑克牌,每张牌的厚度是一样的,都是0.5毫米,将这些牌整齐地叠放起来,大约相当于每层高5米的楼房层数( )
(A)10层 (B)20层 (C)100层 (D)1000层
19.在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是( )
(A)抽到大王的可能性与抽到红桃3的可能性是一样的
(B)抽到黑桃A的可能性比抽到大王的可能性大
(C)抽到A的可能性与抽到K的可能性一样的
(D)抽到A的可能性比抽到小王的大
20.小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的税率为20%,则一年期储蓄的利率为( )
(A)2.25% (B)4.5% (C)22.5% (D)45%
三、用心想一想(每小题10分,共60分)
21.利用方格纸画图:
(1)在下边的方格纸中,过C点画CD‖AB,过C点画CE⊥AB于E;
(2)以CF为一边,画正方形CFGH,若每个小格的面积是1cm2,则正方形CFGH的面积是多少?
22.如图,这是一个由小正方体搭成的几何体的俯视图,小正方形的数字表示在该位置的小立方体的个数,请画出主视图和左视图.
23.某食品厂从生产的食品罐头中,抽出20听检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如下表:
与标准质量的
偏差(单位:克) -10 -5 0 +5 +10 +15
听数 4 2 4 7 2 1
问这批罐头的平均质量比标准质量多还是少?相差多少克?
24.声音在空气中传播的速度(简称音速)与气温有一定关系,下表列出了一组不同气温时的音速:
气温(℃) 0 5 10 15 20
音速(米/秒) 331 334 337 340 343
(1)设气温为x℃,用含x的代数式表示音速;
(2)若气温18℃时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地的距离是多少(光速很大,光从燃放地到人眼的时间小得忽略不计)?
25.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负).
星期 一 二 三 四 五
收入的变化值
(与前一天比较) +10 -5 -3 +6 -2
(1)算出星期五该小店的收入情况;
(2)算出该小店这五天平均收入多少元?
(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.
26.列方程解应用题:某地规定:种粮的农户均按每亩产量750斤,每公斤售价1.1元来计算每亩的农产值,年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业附加税”(“农业附加税”主要用于村级组织的正常运转需要).
①去年该地农业税的税率为7%,王大爷一家种了10亩水稻,则他应上缴农业税和农业附加税共多少元?
②今年,国家为了减轻农民负担鼓励种粮,降低了农业税的税率,并且每亩水蹈由国家直接补贴20元(抵缴税款).王大爷今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可比去年少缴497元.”请你求出今年该地区的农业税的税率是多少?
参考答案
一、1.5 2.1或2或6 3.±0.9,-4 4.15, n(n+1) 5.10,1 6.6.96×108 7.黑色 8.4 9.125 10.略(只要符合实际即可)
二、11.A 12.C 13.B 14.D 15.B 16.A 17.D 18.C 19.B 20.A
三、21.(1)略;(2)图略,面积为10cm2.
22.
23.[-10×4+(-5)×2+0×4+5×7+10×2+15×1]÷20=1(克).
答:这批罐头质量的平均质量比标准质量多,多1克.
24.(1)音速为: x+331(米/秒);
(2)当x=18时, x+331=341.8, 341.8×5=1709(米).
所以此人与燃放烟花所在地距离是1709米.
25.(1)20+10-5-3+6-2=26(元);
(2)(30+25+22+28+26)÷5=26.2(元);
(3)画折线统计图(略).
正确结论例:这五天中收入最高的是星期一为30元.
26.①10×750×1.1×7%(1+20%)=693(元);
②设今年农业税的税率为x%,则
10×750×1.1×x%(1+20%)-10×20=693-497.
解之,得x=4.
答:今年该地区的农业税的税率是4%.
⑺ 初一上学期期中数学试卷
一、填空题(每小题3分,共36分)
1、x=5 方程 =2x-7的解。(填“是”或“不是”)
2、解方程 去分母后方程变形为 。
D
C
B
A
3、某厂预计今年比去年增产15%,年产量达到60万吨,设去年该厂产量为x万吨,则可列方程 。
4、如图在Rt△ABC中,∠ACB=90º,
CD⊥AB于D,若∠B=32º,则∠ACD= º
5、如果|x-3|=2,那么x= 或
6、如果x=1是方程 的解,那么K= 。
7、把方程3x+7y=9化成用含y的代数式表示x= 。
8、方程2x+3y=12的正整数解有 。
9、正十二边形的每个内角等于 度。
10、用加减法解方程组 消去未知数y后得到的一元一次方程
是
11、在△ABC中,AC=13cm,AB=8cm,那么BC的长度应大于 厘米且小于 厘米。
12、为绿化家乡,我校45名优秀团员去郊外植树,女同学每人植6棵,男同学每人植树8棵,劳动结束后共植树320棵。设优秀团员中有x名男同学,y名女同学,依据题意可列方程组为 。
二、选择题(每小题3分,共24分)
1、若三角形三个内角之比为2:3:5,则这个三角形是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、无法判断
2、不能组成三角形的一组线段是( )
A、15cm,10cm,7cm B、4cm,5cm,10cm
C、8cm,8cm,2cm D、2cm,3cm,4cm
3、解方程变形正确的一项是( )
A、由2(x-3)-3(x+1)=2,得2x-3-3x+3=2
B、由-6x=-5,得x=-
C、由 ,得4(x+2)+3(2x-1)=4
D、由1- ,得1-
4、只用一种多边形铺地面是,不能铺满地面的是( )
A、三角形 B、四边形 C、正五边形 D、正六边形
5、若多边形的内角和与外角和之比为7:2,那么这个多边形的边数是( )
A、7 B、8 C、9 D、10
B
A
C
D
E
6、 是方程组 的解,那么a+b的值是( )
A、1 B、2 C、3 D、4
7、如图五角星,∠A+∠B+∠C+∠D+∠E的和是( )
A、180° B、360° C、540° D、不能确定
8、为培养市民节约用水习惯,某市水厂规定:用水不超过10吨,每吨按0.8元收费,超过10吨的部分,按每吨1.5元收费。小华家三月份平均水费为每吨1元,那么小华家三月份用水 吨。
A、12 B、14 C、16 D、20
三、解方程(组)(1、2题各5分,3题10分,共20分)
1、4(x+1)=1-2(x-3) 2、
3、 (要求用两种解法分别完成)
四、解答题(每小题8分,共24分)
1、已知: 与 都满足等式y=Kx+b
(1) 求K与b的值
(2) x为何值时,y=3
2、如图所示△ABC中,AD平分∠BAC,∠B=42°,∠C=54°,求∠ADC的度数。
A
B
C
D
3、如图∠A=120°,∠B=100°,∠C=140°,试判断AE和CD是否平行,并说明理由。
A
E
D
C
B
五、实践探索题(每小题8分,共16分)
1、小明的爸爸三年前为小明存一份3000元的教育储蓄,今年到期时的本息和为3243元。请你帮小明算一算这种储蓄的利率。
2、动物园的门票价格如下表规定。某校初一(1)、(2)两班去游动物园,其中(1)班人数不到50人,(2)班有50多人。如果两班都以班为单位分别购票,则一共应付1207元;如果两班联合起来,作为一个团体购票,则只需付909元。
购票人数
1—50人
51—100人
100人以上
每人门票价
13元
11元
9元
(1) 你如何判断两个班的总人数是否超过100人,说说你的理解。
(2) 列方程或方程组求两班学生人数。
(3) 如果两班不联合买票,是不是初一(1)班学生非要买13元的票呢?你有什么省钱的办法来帮他们买票?说说你的理由。
(4) 你认为是否存在这样可能:51—100人之间买票的钱数与100人以上的钱数相等?如果有,请写出这种可能情况。
⑻ 七年级上册数学试卷及答案(人教版)!!!急!!!!!
应用题
1. 一所学校组织学生秋游,如果租用45座的客车若干辆,就有15个空坐位;如果租用50座的客车,则可少租一辆车,且刚好坐满。已知租用45座车每车的日租金为250元,50座车每车的日租金为300元,要保证每人都有作为,怎样租合算?
2.某市出租车5㎞内起步价为8元,以后每增加1㎞加价1元,请写出乘坐出租车路程x㎞与收费y元的函数关系,并画出图象,小明乘了10㎞付了多少钱,如果小亮付了15元钱乘了几千米?
3.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台。求:
(1)写出总运输费用与北京运往重庆x台之间的函数关系;
(2)若总运费为8400元,上海运往汉口应是多少台?
4.某鱼场的甲仓库存鱼30吨,乙仓库存鱼40吨,现要再往这两个仓库运
送80吨鱼,使甲仓库的存鱼量为乙仓库存鱼量的1.5倍。应往甲仓库和乙仓库分
别运送多少吨鱼?
5.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台。求:
(1)写出总运输费用与北京运往重庆x台之间的函数关系;
(2)若总运费为8400元,上海运往汉口应是多少台?
6.网络时代的到来,很多家庭都拉入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制0.05元/分;B:全月制:54元/月(限一部分人住宅电话入网)此个B种上网方式要加收通信费0.02元/分。
[1]某用户月上网的时间为x小时,两种收费方式的费用分别为y1(元)y2(元),写出y1 、y2与x之间的函数关系式;
[2](1) 在上网时间相同的条件下,请你帮该用户选择哪一种方式上网更省钱?
2.填空题
一、填空:(30分)
1、已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为________________.__________是常量,变量有__________________。
2、计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为__________________,其中____________是自变量,__________是因变量.
3、函数 中,自变量x的取值范围是__________________.函数y=15-x中自变量x的取值范围是
4、以下函数:①y=2x2+x+1 ②y=2πr ③y= ④y=( -1)x
⑤y=-(a+x)(a是常数)是一次函数的有________________.
5、直线y=3-9x与x轴的交点坐标为__________,与y轴的交点坐标为________.
6、若直线y=kx+b平行直线y=3x+4,且过点(1,-2),则k= .
7、已知一次函数y =(m + 4)x + m + 2(m为整数)的图象不经过第二象限,则m = ;
8、一次函数y = kx + b的图象经过点A(0,2),B(-1,0)若将该图象沿着y轴向上平移2个单位,则新图象所对应的函数解析式是 ;
9、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有下列关系:
x 0 1 2 3 4 5 6 7 8
y 12 12.5 13 13.5 14 14.5 15 15.5 16
那么弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式为 ;
二、选择(30分)
1、在同一直角坐标系中,对于函数:① y = – x – 1;② y = x + 1;③ y = – x +1;④y = – 2(x + 1)的图象,下列说法正确的是( )
A、通过点(– 1,0)的是①和③ B、交点在y轴上的是②和④
C、相互平行的是①和③ D、关于x轴对称的是②和③
2、已知函数y= ,当x=a时的函数值为1,则a的值为( )
A.3 B.-1 C.-3 D.1
3、函数y=kx的图象经过点P(3,-1),则k的值为( )
A.3 B.-3 C. D.-
4、下列函数中,图象经过原点的为( )
A.y=5x+1 B.y=-5x-1 C.y=- D.y=
5、点A(– 5,y1)和B(– 2,y2)都在直线y = – 12 x上,则y1与y2的关系是( )
A、y1≤y2 B、y1=y2 C、y1<y2 D、y1>y2
6、函数y = k(x – k)(k<0=的图象不经过( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
7、要从y= x的图像得到直线y= ,就要把直线y= x( )
(A)向上平移 个单位 (B)向下平移 个单位
(C)向上平移2个单位 (D)向下平移2个单位
8、一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q (m3)与放水时间t(时)的函数关系用图表示为( )
9、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
(A) (B) (C) (D)
10.星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( )
(A) 从家出发,到了一个公共阅报栏,看了一会报后,就回家了.
(B)从家出发,一直散步(没有停留),然后回家了.
(C)从家出发,到了一个公共阅报栏,看了一会报后,
继续向前走了一会,然后回家了.
(D)从家出发,散了一会步,就找同学去了,18分钟后
才开始返回.
3.计算题
1、│-7│= .
2、 的倒数是 .
3、0.519精确到百分位的近似值数为 .
4、计算:(-1)2006 = .
5、(-7.5)+6.9 = .
6、-5的相反数是 .
7、用科学计数法表示:457100 = .
8、在数轴上到表示1的点的距离等于3的点所表示的数是 .
9、已知m<0,则 .
10、如果x 2 = 4,那么x = .
11、比较大小:-3 -2.
12、若x = 4是方程ax-2x = 4的解,则a = .
13、已知: ,则 .
打这些好累 所以 把分给我吧