当前位置:首页 » 语数英语 » 数学的起源

数学的起源

发布时间: 2020-11-20 04:11:15

⑴ 古希腊数学的起源

其实这个问题太广泛了,
古希腊数学中的很多思想都被应用到了后来的数学发展中,如芝诺的几个悖论,几乎引领了整个数学一半历史的发展,至今大家都在津津乐道于飞矢不动悖论和阿克琉斯追不上乌龟悖论等一些有趣的数学现象,而曲线图形面积的求取在古希腊采取了多种的方法,毕达哥拉斯学派创建的割补法对后世影响至深,后来的很多问题中应用了割补的思想,乃至后来的积分无穷小、多边形逼近圆等诸多的数学问题都从中获益。
其实古希腊数学给人更多的是一种思维的启示,具体的公式定理不太多,从根号二引发的第一次数学危机开始,古希腊数学渐渐走下神坛,人类数学更多的开始向西欧偏斜,但是不可否认,古希腊数学带来的深远影响是绵延至今的

⑵ 数学起源于哪一年

数学起源于公元前4世纪。
公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。
公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

⑶ 数学起源于什么

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
就纵度而言,在数学各自领域上的探索亦越发深入。
定义
亚里士多德把数学定义为“数量科学”,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”
数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。
数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。
直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。[2]

⑷ 数学的由来是

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程,而其后更发展出更加精微的微积分。

(4)数学的起源扩展阅读

数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。

除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。

更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普,历史上曾有过许多各异的记数系统。

古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的,这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。

⑸ 数学起源

1,什么是数学?
数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。我们在这里就从历史的角度来谈谈“什么是数学”这个问题。
公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。
公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

二.数与形的概念的产生
人类在蒙昧时代就已具有识别事物多寡的能力。原始人在采集、狩猎等生产活动中首先注意到一只羊与许多羊、一头狼与整群狼在数量上的差异。通过一只羊与许多羊、一头狼与整群狼的比较,就逐渐看到了一只羊、一头狼、一条鱼、一棵树等等之间存在着某种共通的东西(即它们的单位性)。当对数的认识变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。

古代的记数方法:
1. 手指计数:利用两只手的十个手指。亚里士多德指出:十进制的广泛采用,
只不过是我们绝大多数人生来具有10个手指这一事实的结果。
2. 石子记数:在地上摆小石子,但记数的石子堆很难长久保存。
3. 结绳记数:在一根绳子上打结来表示事物的多少。比如今天猎到五头羊,就
以在绳子上打五个结来表示;约定三天后再见面,就在绳子上打三个结,过一天解一个结;等等。
秘鲁的印加族人(印第安人中的一部分)古时(公元前1500年前)每收进一捆庄稼,就在绳上打个结,用来记录收获的多少。
中国古代文献《周易 系辞下》有“上古结绳而治”之说。“结绳而治”即结绳记数或结绳记事。
结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来。宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火。”这是用结草来调发军马,传达要调的人数。
其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法。中央民族大学就收藏着一副高山族的结绳,由两条绳子组成:每条上有两个结,再把两条绳结在一起。
4. 刻痕记数:1937年在维斯托尼斯(摩拉维亚)发现一根40万年前的幼狼前
肢骨,7英寸长,上面有55道很深的刻痕。这是已发现的用刻痕方法计数的最早资料。直到今天,在欧、亚、非大陆的某些地方,仍然有一些牧人用在棒上刻痕的方法来计算他们的牲畜。

直到距今大约五千年前,终于出现了书写记数以及相应的记数系统。我们介绍几种古老文明的早期记数系统。(按时代顺序)
1. 古埃及的象形数字(公元前3400年左右)
2. 巴比伦楔形文字(公元前2400年左右)
3. 中国甲骨文数字(公元前1600年左右)
4. 希腊阿提卡数字(公元前500年左右)
5. 中国筹算数码(公元前500年左右)
6. 印度婆罗门数字(公元前300年左右)
7. 玛雅数字(?)

而我们现代广泛使用的是阿拉伯数字。其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。

与数的概念形成一样,人类最初的几何知识也是他们从对形的直觉中萌发出来的,例如,不同种族的人都注意到了圆月和挺拔的松树在形象上的区别。几何学便是建立在对这类从自然界提取出来的“形”的总结的基础之上。例如,一个平面只不过是一片平地的表面,而一条直线则是拉紧了的一段绳子,来自希腊文的英文Hypotenuse(斜边、弦)原先的意思就是“拉紧”。同样,三角形、圆、正方形、长方形等一系列几何形式的概念也来自于人们的观察和实践。
在不同的地区,几何学的这种实践来源方向不尽相同。
1. 古埃及几何学:正如古罗马历史学家希罗多德所指出的,埃及的几何学是“尼
罗河的馈赠”。一年一度的尼罗河洪水冲毁了某个人的土地,那么他就必须向
法老报告所受的损失。法老会派专人来测量所失去的土地,再按相应的比例减税。这样一来,几何学就产生并发展起来了。这类专门负责测量事物的人有专门的名称,叫做“司绳”。
2. 巴比伦人的几何学:也是源于实际的测量,它的重要特征是其算术性质,至
少在公元前1600年,他们就已熟悉长方形、直角三角形和等腰三角形和某些梯形的面积计算。
3. 古印度几何学:起源与宗教实践密切相关,公元前8世纪至5世纪形成的所
谓“绳法经”,便是关于祭坛与寺庙建造中的几何问题及其求解法则的记载。
4. 古代中国几何学:起源更多地与天文观测相联系。中国最早的数学经典《周
髀算经》(至晚在公元前2世纪成书)事实上是一部讨论西周初年天文测量中所用数学方法的著作

⑹ 数学的来历

大约在300万年前,处于原始社会的人类用在绳子上打结的方法来记数,并以绳结的大小来表示野兽的大小。数的概念就是这样逐渐发展起来的。在距今约五六千年前,古埃及人较早地学会了农业生产。尼罗河每年7月定期泛滥,11月洪水逐渐减退。

当时古埃及的农业制度,是国王分配同样大小的正方形土地给每一个人,耕种的人每年提取收获的一部分交租。如果洪水冲垮了他们所耕种的土地,他们可以报告国王,国王就派人前来调查并将损失的那一部分测量出来,这样,他们可以相应地少交一些租。

这种对于土地的测量,最终产生了几何学。实际上,几何学本来就是“土地测量”的意思。数学就是从“结绳记数”和“土地测量”开始的。距今两千年前,在欧洲东南部生活的古希腊人,继承和发展了这些数学知识,并将数学发展成为一门科学。

古希腊文明毁灭后,阿拉伯人将他们的文化保存下来并加以发展,后来又传回欧洲,数学重新得到繁荣,并最终导致了近代数学的创立。

(6)数学的起源扩展阅读:

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

现今数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

⑺ 数学的起源

数学小故事:数学的起源:数学是一门最古老的学科,它的起源可以上溯到一万专多年以前。但是,公元1000年以前的属资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
看这就是数学的起源,你们知道吗?

⑻ 数学的来历

数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。


向左转|向右转


(8)数学的起源扩展阅读:

发展

一、商周数学

大约4000年前夏朝的建立,标志着中国进入了奴隶社会。随着社会的发展,商代出现了比较成熟的文字---甲骨文,西周则演变为金文,即刻在青铜器上的铭文。

二、秋战国时代的数学

春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大。数学园地更是生机盎然,朝气勃勃。

四、周髀算经

《周髀》是西汉初期的一部天文、数学著作。髀是量日影的标杆(亦称表),因书中记载了不少周代的天文知识,故名《周髀》。唐初凤选定数学课本时,取名《周髀算经》。

⑼ 数学的来历 50字

数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。

人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支。

(9)数学的起源扩展阅读:

许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。

此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统。

把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。

代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法。

热点内容
电视剧有哪些 发布:2025-06-19 15:14:47 浏览:482
转变教育观念 发布:2025-06-19 14:40:56 浏览:709
英语rap 发布:2025-06-19 13:46:51 浏览:845
教育大改革 发布:2025-06-19 10:44:43 浏览:576
源新生物 发布:2025-06-19 10:33:49 浏览:595
班主任与三兄弟 发布:2025-06-19 10:00:20 浏览:269
小学安全教育ppt 发布:2025-06-19 09:35:03 浏览:56
2015年度师德总结 发布:2025-06-19 09:32:47 浏览:30
2017高考全国1理科数学 发布:2025-06-19 07:41:32 浏览:424
历史霸气名字 发布:2025-06-19 07:38:25 浏览:656