九年级数学试卷
『壹』 九年级上数学全程测试卷答案 人教版
1、判断下列方程,是一元二次方程的有____________.
(1) ; (2) ; (3) ;
(4) ;(5) ;(6) .
(提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)
2、下列方程中不含一次项的是( )
A. B.
C. D.
3、方程 的二次项系数___________;一次项系数__________;常数项_________.
4、1、下列各数是方程 解的是( )
A、6 B、2 C、4 D、0
5、根据下列问题,列出关于 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长 .
(2)一个矩形的长比宽多2,面积是100,求矩形的长 .
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长 .
◆典例分析
已知关于 的方程 .
(1) 为何值时,此方程是一元一次方程?
(2) 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.
解:(1)由题意得, 时,即 时,
方程 是一元一次方程 .
(2)由题意得, 时,即 时,方程 是一元二次方程.此方程的二次项系数是 、一次项系数是 、常数项是 .
◆课下作业
●拓展提高
1、下列方程一定是一元二次方程的是( )
A、 B、
C、 D、
2、 是关于 的一元二次方程,则 的值应为( )
A、 =2 B、 C、 D、无法确定
3、根据下列表格对应值:
3.24 3.25 3.26
-0.02 0.01 0.03
判断关于 的方程 的一个解 的范围是( )
A、 <3.24 B、3.24< <3.25
C、3.25< <3.26 D、3.25< <3.28
4、若一元二次方程 有一个根为1,则 _________;若有一个根是-1,则b与 、c之间的关系为________;若有一个根为0,则c=_________.
5、下面哪些数是方程 的根?
-3、-2、-1、0、1、2、3、
6、若关于 的一元二次方程 的常数项为0,求 的值是多少?
●体验中考
1、(2009年,武汉)已知 是一元二次方程 的一个解,则 的值是( )
A.-3 B.3 C.0 D.0或3
(点拨:本题考查一元二次方程的解的意义.)
2、(2009年,日照)若 是关于 的方程 的根,则 的值为( )
A.1 B.2 C.-1 D.-2
(提示:本题有两个待定字母 和 ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)
参考答案:
◆随堂检测
1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足 的条件下才是一元二次方程.
2、D 首先要对方程整理成一般形式,D选项为 .故选D.
3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式 ,同时注意系数符号问题.
4、B 将各数值分别代入方程,只有选项B能使等式成立.故选B.
5、解:(1)依题意得, ,
化为一元二次方程的一般形式得, .
(2)依题意得, ,
化为一元二次方程的一般形式得, .
(3)依题意得, ,
化为一元二次方程的一般形式得, .
◆课下作业
●拓展提高
1、D A中最高次数是三不是二;B中整理后是一次方程;C中只有在满足 的条件下才是一元二次方程;D选项二次项系数 恒成立.故根据定义判断D.
2、C 由题意得, ,解得 .故选D.
3、B 当3.24< <3.25时, 的值由负连续变化到正,说明在3.24< <3.25范围内一定有一个 的值,使 ,即是方程 的一个解.故选B.
4、0; ;0 将各根分别代入简即可.
5、解:将 代入方程,左式= ,即左式 右式.故 不是方程 的根.
同理可得 时,都不是方程 的根.
当 时,左式=右式.故 都是方程 的根.
6、解:由题意得, 时,即 时, 的常数项为0.
●体验中考
1、A 将 带入方程得 ,∴ .故选A.
2、D 将 带入方程得 ,∵ ,∴ ,
∴ .故选D.
莲山课件 原文地址:http://www.5ykj.com/shti/cusan/114458.htm
『贰』 2021届九年级第一次诊断试卷数学
我也在数学上花了很多功夫,成绩上升的速度不是很快,但我们班上一个学霸这样分享她的学习体悟:
(1)首先刷题是必要的,多做题才能弥补知识上的漏洞
(2)其次平时要注意整理错题,考前翻阅,不然纷纷扬扬的卷子实在太麻烦了
(3)数学呢,既要多做题,也要多回顾,细细想一想这类题和与其相关题目是不是有什么共同的
知识点,共同的突破口、解题方法
(4)另外,引用一下我们数学老师的话,注意术(解题的方向)和道(解题的策略)的关系
最后,衷心祝愿你能在数学上有所突破,我也在一起努力
『叁』 九年级数学中考试卷
中考数学专题复习——压轴题
1.(2008年四川省宜宾市)
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为 )
.
2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8, ),C(0, ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
3. (08浙江温州)如图,在 中, , , , 分别是边 的中点,点 从点 出发沿 方向运动,过点 作 于 ,过点 作 交 于
,当点 与点 重合时,点 停止运动.设 , .
(1)求点 到 的距离 的长;
(2)求 关于 的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.
4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
5、(2007浙江金华)如图1,已知双曲线y= (k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ;
(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.
6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点( ,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于 ,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.