2010陕西高考数学
⑴ 2010陕西高考数学答案
2010陕西理
一、 选择题
1.集合A= {x∣ },B={x∣x<1},则 = (D)
(A){x∣x>1} (B) {x∣x≥ 1} (C) {x∣ } (D) {x∣ }
2.复数 在复平面上对应的点位于 (A)
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
3.对于函数 ,下列选项中正确的是 (B)
(A) f(x)在( , )上是递增的 (B) 的图像关于原点对称
(C) 的最小正周期为2 (D) 的最大值为2
4. ( )展开式中 的系数为10,则实数a等于 (D)
(A)-1 (B) (C) 1 (D) 2
5.已知函数 = ,若 =4a,则实数a= (C)
(A) (B) (C) 2 (D) 9
6.右图是求样本x 1,x2,…x10平均数 的程序框图,图中空白框中应填入的内容为【A】
(A) S=S+x n (B) S=S+
(C) S=S+ n (D) S=S+
7. 若某空间几何体的三视图如图所示,
则该几何体的体积是【C】
(A) (B)
(C) 1 (D) 2
8.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6 x-7=0相切,则p的值为【C】
(A) (B) 1 (C) 2 (D) 4
9.对于数列{a n},“a n+1>∣a n∣(n=1,2…)”是“{a n}为递增数列”的【B】
(A) 必要不充分条件 (B) 充分不必要条件
(C) 必要条件 (D) 既不充分也不必要条件
10.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表。那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为【B】
(A) y= (B) y= (C) y= (D) y=
二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)。
11.已知向量α =(2,-1),b=(-1,m),c=(-1,2),若(a+b)‖c, 则m=_-1_____
12. 观察下列等式:13+23=32,13+23+32=62,13+23+33+43=102,……,
根据上述规律,第五个等式为¬¬¬¬¬¬¬¬¬¬¬ _13+23+__32__+43____+53__=212___________.
13.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为
14.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的 的排放量b及每万吨铁矿石的价格c如下表:
a b(万吨) C(百万元)
A 50% 1 3
B 70% 0.5 6
某冶炼厂至少要生产1.9(万吨)铁,若要求 的排放量不超过2(万吨),则购买铁矿石的最少费用为_15_ (百万元)
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式 的解集为 .
B.(几何证明选做题)如图,已知 的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的图与AB交于点D,则 .
C.(坐标系与参数方程选做题)已知圆C的参数方程为 以原点为极点,x轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 则直线 与圆C的交点的直角坐标为
三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)
16.(本小题满分12分)
已知 是公差不为零的等差数列, 成等比数列.
求数列 的通项; 求数列 的前n项和
解 由题设知公差
由 成等比数列得
解得 (舍去)
故 的通项
,
由等比数列前n项和公式得
17.(本小题满分12分)
如图,A,B是海面上位于东西方向相聚5(3+ )海里的两个观测点,现位于A点北偏东45°,B点北偏西60°且与B点相距 海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D点需要多长时间?
解 由题意知AB= 海里,
∠ DAB=90°—60°=30°,∠ DAB=90°—45°=45°,∴∠ADB=180°—(45°+30°)=105°,在△ADB中,有正弦定理得
18.(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA ⊥平面ABCD,AP=AB=2,BC=2 √ 2,E,F分别是AD,PC的重点
(Ⅰ)证明:PC ⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小。
解法一 (Ⅰ)如图,以A为坐标原点,AB,AD,AP算在直线分别为x,y,z轴建立空间直角坐标系。
∵AP=AB=2,BC=AD=2√ 2,四边形ABCD是矩形。
∴A,B,C,D的坐标为A(0,0,0),B(2,0,0),C(2, 2 √ 2,0),D(0,2 √ 2,0),P(0,0,2)
又E,F分别是AD,PC的中点,
∴E(0,√ 2,0),F(1,√ 2,1)。
∴ =(2,2 √ 2,-2) =(-1,√ 2,1) =(1,0,1),
∴ • =-2+4-2=0, • =2+0-2=0,
∴ ⊥ , ⊥ ,
∴PC⊥BF,PC⊥EF,BF ∩ EF=F,
∴PC⊥平面BEF
(II)由(I)知平面BEF的法向量
平面BAP 的法向量
设平面BEF与平面BAP的夹角为 θ ,
则
∴ θ=45℃, ∴ 平面BEF与平面BAP的夹角为45
解法二 (I)连接PE,EC在
PA=AB=CD, AE=DE,
∴ PE= CE, 即 △PEC 是等腰三角形,
又F是PC 的中点,∴EF⊥PC,
又 ,F是PC 的中点,
∴BF⊥PC.
又
19 (本小题满分12分)
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:
( )估计该小男生的人数;
( )估计该校学生身高在170~185cm之间的概率;
( )从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~180cm之间的概率。
解 ( )样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。
( )有统计图知,样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~185cm之间的频率 故有f估计该校学生身高在170~180cm之间的概率
( )样本中女生身高在165~180cm之间的人数为10,身高在170~180cm之间的人数为4。
设A表示事件“从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~180cm之间”,
则
20.(本小题满分13分)
如图,椭圆C: 的顶点为A1,A2,B1,B2,焦点为F1,F2, | A1B1| = ,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线, ,是否存在上述直线l使 成立?若存在,求出直线l的方程;若不存在,请说明理由。
解 (1)由 知a2+b2=7, ①
由 知a=2c, ②
又b2=a2-c2 ③
由 ①②③解得a2=4,b2=3,
故椭圆C的方程为 。
(2)设A,B两点的坐标分别为(x1,y1)(x2,y2)
假设使 成立的直线l不存在,
(1) 当l不垂直于x轴时,设l的方程为y=kx+m,
由l与n垂直相交于P点且 得
,即m2=k2+1.
∵ ,
21、(本小题满分14分)
已知函数f(x)= ,g(x)=alnx,a R。
(1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值 (a)的解析式;
(3) 对(2)中的 (a),证明:当a (0,+ )时, (a) 1.
解 (1)f’(x)= ,g’(x)= (x>0),
由已知得 =alnx,
= , 解德a= ,x=e2,
两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= ,
切线的方程为y-e= (x- e2).
(1) 当a.>0时,令h (x)=0,解得x= ,
所以当0 < x< 时 h (x)<0,h(x)在(0, )上递减;
当x> 时,h (x)>0,h(x)在(0, )上递增。
所以x> 是h(x)在(0, +∞ )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。
所以Φ (a)=h( )= 2a-aln =2
(2)当a ≤ 0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)递增,无最小值。
故 h(x) 的最小值Φ (a)的解析式为2a(1-ln2a) (a>o)
(3)由(2)知Φ (a)=2a(1-ln2a)
则 Φ 1(a )=-2ln2a,令Φ 1(a )=0 解得 a =1/2
当 0<a<1/2时,Φ 1(a )>0,所以Φ (a ) 在(0,1/2) 上递增
当 a>1/2 时, Φ 1(a )<0,所以Φ(a ) 在 (1/2, +∞)上递减。
所以Φ(a )在(0, +∞)处取得极大值Φ(1/2 )=1
因为Φ(a )在(0, +∞)上有且只有一个极致点,所以Φ(1/2)=1也是Φ(a)的最大值
所当a属于 (0, +∞)时,总有Φ(a) ≤ 1
⑵ 2012陕西高考数学理科难度
陕西新课程高考数学自主命题经历了2010年的起步,到2011年的渐变,再到2012年的发展的过程。在命题专家的精心设计和打磨下,使得试题布局更为科学合理,更有利于高校的选拔和中学的日常教学,显示了陕西高考数学试题的特色。总体印象是:和上年相比较,试题的综合性减弱,运算量减少,难度总体下降,我们估计平均分有较大的提升。可以说,陕西2012年的高考数学试题,有利于不同层次的考生的正常发挥,达到了考生轻松、家长舒心、社会满意的效果。
立足基础,注重技能考查。基础知识、基本技能、基本思想方法和基本活动经验在命题设计里得到比较好的把握。理科的第18题考查利用立几中重要的三垂线定理逆定理的证明及书写,属于核心知识,解题时用的是立体几何中最基本的方法,这比去年的余弦定理的证明来说,命题者给出了图形显然是降低了门槛,提高了试题的得分率,这一设计值得称赞。
适度综合,掌控难易有度。第9题的三角形中的余弦定理的考查,有机地结合了均值不等式求最值,难易适中,设计较好。第14题的填空题,集分段函数、导数及其曲线的切线与线性规划于一体,知识内容多而不显其庞杂,组合出考能力的特色。
数学实验,展示试题亮点。今年数学第10题的设计,用随机数的模拟实验方法估计圆周率的近似值,不要求考生设计程序,仍以读框图为主,考查了框图和几何概型等数学知识,试题设计新颖,突出了数学学科的实验特征。
增加思考,减少运算长度。第17题的数列问题,综合考察了等比数列与等差数列的有关知识,思维量不减少,计算量也不大;第20题的概率情景较复杂,关键在于读懂题,思考分类,具体计算运算量不大。
着眼实际,彰显数学魅力。数学是一种工具,应用的广泛性是数学的一大特点,联系实际的应用性问题在今年的试卷中得到比较好的体现。理科第8题,考查了乒乓球比赛中的5局3胜制的总局数的计算问题,与生活贴近,入手容易,难在问题的分类与分步的计算上;第13题的抛物线拱桥的水面宽度的计算,来自于课本的原题情景,突出了生活气息;更值得一提的是理科第20题的银行服务窗口的业务办理过程中的等待时间问题,现实生活气息浓厚,它对数学地分析问题与解决问题能力的考查,起到良好的示范作用。
避免热点,保持考查重点。今年的理科试题,回避了许多数学热点问题:如三视图、圆锥曲线间的位置关系、直方图、三角函数的性质等,但对函数性质的考查没有减弱。理科的第2题考查了单调性与奇偶性、第16题考查了三角函数的图像、周期与求值问题;第20题突出概率、随机变量的分布列和期望的计算——这是概率与统计的核心内容。第21题考查了函数的单调性、零点、恒成立和不等式的证明主干知识。
文理有别,兼顾学科要求。文理科不同的题目在选择填空中有8道,在解答题里有2道。其文科第16题的数列题、第21题的函数题属于姊妹题,设计较好。文科第19题的概率题与去年持平。文科第5题框图估计有难度,往后调整相似较合适。文科基本保持了去年的命题风格,但难度再下调一些更有利于日常教学和学生水平的发挥。
降低门槛,利于考生发挥。理科的第5题,直接给出图形,并且建好空间坐标系,考查线线角的余弦值,一反常态——要求考生建立空间坐标系的做法;第6题给出实际问题的茎叶图,考查平均数与中位数的大小,情景简单,无需具体运算只要心算便知答案,富有特色;第19题考查了用待定系数法求椭圆方程,第二问的设计虽是考查直线与椭圆的位置关系,赋予向量形式,运算简单,不失为一道解析几何好题。特别是第21题的最后一问,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用。
今年的试题总体给人的印象平平,但平中显示出试题的综合与魅力实属不易,它不像一些模考题借气势压学生,而是在平和的气氛中引导考生发挥自己的水平,应该说今年的数学考试给考生带来的亲近感、愉悦感是历年少有的。预计数学平均分较往年有较大回升,平均分的提升有利于发挥数学在高考总分中的权重,但试题难度的下降会对部分数学优等生的区分不利。有理由相信,陕西的数学高考命题将会在把握难度,关注区分度,凸显数学本质,联系生活实际,重视能力考查等方面会做出更进一步的探索,定会起到良好的评价效果,得到社会各界的普遍认可。
⑶ 陕西高考数学文理科有哪些区别
理科数学要难很多,文科相对简单。但是文科生以后学校少,不好选择。书是不一样的,考的东西差不多,但是理科的难度更大,理科数学学的是2-几 文科是1-几 可见文科比较简单
⑷ 2010年陕西高考文科数学用什么课本
阿飞机场警方好好努力
⑸ 陕西2010高考数学解析
理数
http://wenku..com/view/2fa79800a6c30c2259019ebe.html
http://wenku..com/view/cd9ae636a32d7375a41780be.html
文数
⑹ 谁有2010年高考文科数学(陕西卷)答案帮忙复制过来
2010文科数学(必修+选修Ⅱ)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).
1.集合A={x -1≤x≤2},B={x x<1},则A∩B= [D]
(A){x x<1} (B){x -1≤x≤2}
(C) {x -1≤x≤1} (D) {x -1≤x<1}
解析:本题考查集合的基本运算
由交集定义得{x -1≤x≤2}∩{x x<1}={x -1≤x<1}
2.复数z= 在复平面上对应的点位于 [A]
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
解析:本题考查复数的运算及几何意义
,所以点( 位于第一象限
3.函数f (x)=2sinxcosx是 [C]
(A)最小正周期为2π的奇函数 (B)最小正周期为2π的偶函数
(C)最小正周期为π的奇函数 (D)最小正周期为π的偶函数
解析:本题考查三角函数的性质
f (x)=2sinxcosx=sin2x,周期为π的奇函数
4.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为 ,样本标准差分别为sA和sB,则 [B]
(A) > ,sA>sB
(B) < ,sA>sB
(C) > ,sA<sB
(D) < ,sA<sB
解析:本题考查样本分析中两个特征数的作用
<10< ;A的取值波动程度显然大于B,所以sA>sB
5.右图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为[D]
(A)S=S*(n+1)
(B)S=S*xn+1
(C)S=S*n
(D)S=S*xn
解析:本题考查算法
S=S*xn
6.“a>0”是“ >0”的 [A]
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
解析:本题考查充要条件的判断
, a>0”是“ >0”的充分不必要条件
7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)
f(y)”的是 [C]
(A)幂函数 (B)对数函数 (C)指数函数 (D)余弦函数
解析:本题考查幂的运算性质
8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B]
(A)2 (B)1
(C) (D)
解析:本题考查立体图形三视图及体积公式
如图,该立体图形为直三棱柱
所以其体积为
9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为 [C]
(A) (B)1 (C)2 (D)4
解析:本题考查抛物线的相关几何性质及直线与圆的位置关系
法一:抛物线y2=2px(p>0)的准线方程为 ,因为抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,所以
法二:作图可知,抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切与点(-1,0)
所以
10.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为 [B]
(A)y=[ ] (B)y=[ ] (C)y=[ ] (D)y=[ ]
解析:法一:特殊取值法,若x=56,y=5,排除C、D,若x=57,y=6,排除A,所以选B
法二:设 ,
,所以选B
二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).
11.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根据上述规律,第四个等式为13+23+33+43+53=(1+2+3+4+5)2(或152).
解析:第i个等式左边为1到i+1的立方和,右边为1到i+1和的完全平方
所以第四个等式为13+23+33+43+53=(1+2+3+4+5)2(或152).
12.已知向量a=(2,-1),b=(-1,m),c=(-1,2)若(a+b)∥c,则
m= -1 .
解析: ,所以m=-1
13.已知函数f(x)= 若f(f(0))=4a,则实数a= 2 .
解析:f(0)=2,f(f(0))=f(2)=4+2a=4a,所以a=2
14.设x,y满足约束条件 ,则目标函数z=3x-y的最大值为 5 .
解析:不等式组表示的平面区域如图所示,
当直线z=3x-y过点C(2,1)时,在y轴上截距最小
此时z取得最大值5
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式 <3的解集为 .
解析:
B.(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD= cm.
解析: ,由直角三角形射影定理可得
C.(坐标系与参数方程选做题)参数方程 ( 为参数)化成普通方程为
x2+(y-1)2=1.
解析:
三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).
16.(本小题满分12分)
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项; (Ⅱ)求数列{2an}的前n项和Sn.
解 (Ⅰ)由题设知公差d≠0,
由a1=1,a1,a3,a9成等比数列得 = ,
解得d=1,d=0(舍去), 故{an}的通项an=1+(n-1)×1=n.
(Ⅱ)由(Ⅰ)知 =2n,由等比数列前n项和公式得
Sm=2+22+23+…+2n= =2n+1-2.
17.(本小题满分12分)
在△ABC中,已知B=45°,D是BC边上的一点,
AD=10,AC=14,DC=6,求AB的长.
解 在△ADC中,AD=10,AC=14,DC=6,
由余弦定理得cos = ,
ADC=120°, ADB=60°
在△ABD中,AD=10, B=45°, ADB=60°,
由正弦定理得 ,
AB= .
18.(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
解 (Ⅰ)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.
又BC∥AD,∴EF∥AD,
又∵AD 平面PAD,EF 平面PAD,
∴EF∥平面PAD.
(Ⅱ)连接AE,AC,EC,过E作EG∥PA交AB于点G,
则BG⊥平面ABCD,且EG= PA.
在△PAB中,AD=AB, PAB°,BP=2,∴AP=AB= ,EG= .
∴S△ABC= AB•BC= × ×2= ,
∴VE-ABC= S△ABC•EG= × × = .
19 (本小题满分12分)
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:
( )估计该校男生的人数;
( )估计该校学生身高在170~185cm之间的概率;
( )从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率。
解 ( )样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。
( )有统计图知,样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~185cm之间的频率 故有f估计该校学生身高在170~180cm之间的概率
( )样本中身高在180~185cm之间的男生有4人,设其编号为
样本中身高在185~190cm之间的男生有2人,设其编号为
从上述6人中任取2人的树状图为:
故从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,因此,所求概率
20.(本小题满分13分)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,l是与n垂直相交与点P,与椭圆相交于A,B两点的直线 立?若存在,求出直线l的方程;并说出;若不存在,请说明理由。
21、(本小题满分14分)
已知函数f(x)= ,g(x)=alnx,a R。
(1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值 (a)的解析式;
(3) 对(2)中的 (a),证明:当a (0,+ )时, (a) 1.
解 (1)f’(x)= ,g’(x)= (x>0),
由已知得 =alnx,
= , 解德a= ,x=e2,
两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= ,
切线的方程为y-e= (x- e2).
(2)由条件知
Ⅰ 当a.>0时,令h (x)=0,解得x= ,
所以当0 < x< 时 h (x)<0,h(x)在(0, )上递减;
当x> 时,h (x)>0,h(x)在(0, )上递增。
所以x> 是h(x)在(0, +∞ )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。
所以Φ (a)=h( )= 2a-aln =2
Ⅱ当a ≤ 0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)递增,无最小值。
故 h(x) 的最小值Φ (a)的解析式为2a(1-ln2a) (a>o)
(3)由(2)知Φ (a)=2a(1-ln2a)
则 Φ 1(a )=-2ln2a,令Φ 1(a )=0 解得 a =1/2
当 0<a<1/2时,Φ 1(a )>0,所以Φ (a ) 在(0,1/2) 上递增
当 a>1/2 时, Φ 1(a )<0,所以Φ(a ) 在 (1/2, +∞)上递减。
所以Φ(a )在(0, +∞)处取得极大值Φ(1/2 )=1
因为Φ(a )在(0, +∞)上有且只有一个极致点,所以Φ(1/2)=1也是Φ(a)的最大值
所当a属于 (0, +∞)时,总有Φ(a) ≤ 1
⑺ 2011年陕西高考数学真难啊,而且题好怪,貌似用的是全国卷。
今年陕西数学卷比较牛比 敢打乱先易后难的顺序,把解几居然放到第二个。说说题吧,选择的复数考察过难 没多少人知道几何意义.谁能想到会这么搞!还有选择题的函数 解几的难度比较小 !总之 选择题很难拿到45分 说填空吧 填空题比较正常 难度适宜 再说大题∶第一题 为简单题 纯秒杀的 第二题 圆 椭圆与直线 难度不大 但此题位置放此不合适 第三题 简洁明了 就九个字哈 这是去年四川的高考题,今年拿来很不合适 许多人做过就会 没做可能就不会 ,就算做过谁会知道今年又来!我对此题很厌恶 出题人纯瓜皮 没本事 去年没出好 被批评了 今年就乱抄来点题 鄙视!剩下地就不说了 大家没考好就都没考好 估计一般水平地人在110左右 好学生在135以上 我是西工大实验班 大概估了130 就这样了 谢谢评论
⑻ 高考+陕西高考数学难度系数
如果将全国各省份的高考按照录取率难度进行排名,江苏卷是全国出了名的难,江西、...④较难(B):四川,湖南,江西,广东[2] ⑤一般(C):陕西,黑龙江,吉林,辽宁
⑼ 陕西高考数学卷与全国卷比较
1、高考使用什么类型的全国卷是省教育厅与共同商议决定的。
2、全国卷3难度稍低一些,陕西省使用全国三卷可能更适合陕西省的教育发展水平。
⑽ 2010陕西高考一本线
我是09年考生,我看了题。文科肯定会升应该在550以上,理科英语难度降低,数学虽然简单题比去年难一点,但最后两个题难度降低,所以对能上一本的考生,数学还是偏简单,语文比去年稍难,但语文拉不开分,理综明显比09年简单,不论大题还是选择题,跟0708那更没法比陕西省自己的理综还是拼不过全国1,所以我认为理科一本线也会在555以上,甚至560左右。