高二数学竞赛试题
1. 今天的创新杯数学竞赛高二试题
创新杯数学竞赛试题
一、选择题(5’×10=50’) 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的字母填在下面的表格中。明阳教育
1.与30以内的奇质数的平均数
最接近的数是
A.12 B.13 C.14 D.15
2.把10个相同的小正方体按如图所示的位置堆放,它的外表含有
若干个小正方形,如图将图中标有字母A的一个小正方体搬去,
这时外表含有的小正方形个数与搬动前相比
A.不增不减 B.减少1个
C.减少2个 n.减少3个
3.一部电视剧共8集,要在3天里播完,每天至少播一集,则安排
播出的方法共有________种。
A.21 B.22 C.23 D.24
4.甲、乙、丙三人出同样多的钱买同样的笔记本,最后甲、乙都比丙多得3本,甲、乙都给了丙2.4元,那么每本笔记本的价格是________元.
A.0.8 B.1.2 C.2.4 D.4.8
5.用0,1,2,…,9这十个数字组成一个四位数,一个三位数,一个两位数与一个一位数,每个数字只许用一次,使这四个数的和等于2007,则其中三位数的最小值是:C,1736+204+58+9=2007
A.201 B.203 C.204 D.205
6.有2007盏亮着的灯,各有一个拉线开关控制着,拉一下拉线开关灯会由亮变灭,再拉一下又由灭变亮,现按其顺序将灯编号为1,2,…,2007,然后将编号为2的倍数的灯线都拉一下,再将编号为3的倍数的灯线都拉一下,最后将编号为5的倍数的灯线都拉一下,三次拉完后亮着的灯有_________盏.
A.1004 B.1002 C.1000 D.998
7.已知一个三位数的百位、十位和个位分别是a,b,c,而且a×b×c=a+b+c,那么满足上述条件的三位数的和为
A.1032 B,1132 C.1232 D.1332
8.某次数学考试共5道题,全班52人参加,共做对181题.已知每人至少做对1题;做对1道题的有7人,做对2道题的人和做对3道题的人一样多,做对5道题的有6人,那么做对4道题的人数是
A.29 B.31 C.33 D.35
9.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,…,那么5个三角形最多能将平面分成的部分数是
A.62 B.92 C.512 D.1024
10.一条单线铁路上有5个车站A,B,C,D,E,它们之间的路程如图所示.两辆火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.那么应安排在某个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车的时间是
二、填空题(5’×12二60’)
11.观察5*2=5十55二60,7*4=7+77+777+7777=8638,推知9* 5的值是_111105_____•
12.如图,将宽2米的一些汽车停在长度为30米的未划停
车格的路边,最好的情况下可停___15____部车,最差的情况下可停____8_____部车.
13.如图,一个圆被四条半径分成四个扇形,每个扇形的周长为7.14cm,那么该圆的面积为______12.56_____cm2(圆周率π取3.14).
14.按以下模式确定,在第n个正方形内应填人的数是(n+1)( n+2)( n+3)-3n-7_________________,其中,n是非零的自然数.
15.篮子里装有不多于500个苹果,如果每次二个,每次三个,每次四个,每次五个,每次六个地取出来,篮子中都剩下一个苹果,而如果每次七个地取出,那么没有苹果剩下,篮子中共有苹果_____301_____个.
16.一个国家的居民不是骑士就是无赖,骑士不说谎,无赖永远说谎.我们遇到该国居民A,B,C,A说:“如果C是骑士,那么B是无赖.”C说:“A和我不同,一个是骑士,一个是无赖.”那么这三个人中____B______是骑士,____AC____是无赖.
17.甲、乙两人对同一个数做带余数除法,甲将它除以8,乙将它除以9,现知甲所得的商数与乙所得的余数之和为13,那么甲所得的余数是___4______•
明阳
18.如图,以△ABC的两条边为边长作两个正方形BDEC和ACFG,已知S△ABC:S四边形BDEC=2:7,正方形BDEC和正方形 ACFG的边长之比为3:5,那么△CEF与整个图形面积的最简整数比是_____9:137______•
19.一个口袋中装有3个一样的球,3个球上分别写有数字2,3和4.若第一次从袋子中取出一个球,记下球上的数字a,并将球放回袋中.第二次又从袋子中取出一个球,记下球上的数字b.然后算出它们的积.
则所有不同取球情况所得到的积的和是____53____
20.如图,A,B是圆的一条直径的两端,小张在A点,小王在B点, 同时出发逆时针而行,第一周内,他们在C点相遇.在D点第二次相遇.已知C点离A点80米,D点离B点60米.则这个圆的周长是____360_____米.明阳教育
21.九个连续的自然数,它们都大于80,那么其中质数至多有___4___个.
22.把从1开始的奇数1,3,5,…,排成一行并分组,使得第n组有n个数,即
(1),(3,5),(7,9,11),(13,15,17,19),…
那么2007位于第___45____组,是这一组的第___27___个数.
三、解答题(共40分)
23.(20分)如图,A,B两地相距1500米,实线表示甲上午8时由A地出发往B地行走,到达B地后稍作休息,又从B地出发返回A地的步行情况;又虚线表示乙上午8时从B地出发向A地行走,到了A地,立即返回B地的步行情况.
(1)观察此图,解下列问题:
①甲在B地休息了多长时间?算一算,休息前、后步行的速度各是多少?15分,75、75
②乙从B地到A地,又从A地到B地的步行速度各是多少?50、50
(2)甲、乙二人在途中相遇两次,结合图形、算一算,第一次,第二次相遇的时刻各是几点几分?8:12,8:45
24.(20分)
如上图,将2008个方格排成一行,在最左边的方格中放有一枚棋子,甲、乙二人交替地移动这枚棋子,甲先乙后,每人每次可将棋子向右移动若干格,但移动的格数不能是合数,将棋子移到最右边格子的人获胜.
(1)按每人每次移动的格子数分类,有哪4类走法?
共以下4类走法:1、两人移动的棋子格数为即不是质数,也不是合数的数字:1
2、个位数字为2的质数:2
3、个位数字为5的质数:5
4、个位数字为1、3、7、9的质数。
也有老师认为这样分:奇奇、奇偶,偶偶,偶奇。即指两人拿的奇偶性来分。但是我认为这样分的话,和下面“对于乙的四类走法”这句问话想矛盾。
请大家发表自己的看法,你们是怎么分的呢?
(2)如果甲第1次走了3格,对于乙的四类走法,甲应分别采取怎样的对策才能保证自己(甲)一定获胜?并简单说明,为什么采取这样的对策,甲一定获胜?
甲第一次移了3格后,剩下2004。现在轮到乙移。乙移动后又该轮到甲。也就是说甲总是最后移。所以甲要想获胜,他倒数每二次拿后一定要留下至少4个,这样乙才不能拿完。这样甲就必胜。
当乙拿1个时,甲就拿3个,或者其他和1加起来是4的倍数的质数。这样就会留下4的倍数个格子。最后甲必胜。
当乙拿2个,甲也拿2个。保证甲留的是4的倍数。
当乙拿5个及和其他质数也同样的道理。只要甲每次在乙拿完后,再拿和乙加起来是4的倍数的数。这样,最后总是甲胜。
2. 奥林匹克高中数学竞赛历届二试题
《江雪》作者:柳宗元 千山鸟飞绝,万径人踪灭。
3. iap高二数学竞赛复赛的试题有没有 明天就考试了
试题都是保密的,找不到的。而且IAP竞赛以给学生出具学习评估报告见长,主要就是分析学生的各方面学习情况,就像医生给病人看病一样,如果提前真的找到了试题,那再去参加比赛还有什么意义呢
4. 求:高中数学竞赛试题及答案
人教论坛有
5. 历届高中数学竞赛试题及答案
2011年全国高中数学联赛江西省预赛
试 题
一、填空题(每小题10分,共 分)
、 是这样的一个四位数,它的各位数字之和为 ;像这样各位数字之和为 的四位数总共有 个.
、设数列 满足: ,且对于其中任三个连续项 ,都有: .则通项 .
、以抛物线 上的一点 为直角顶点,作抛物线的两个内接直角三角形 与 ,则线段 与 的交点 的坐标为 .
、设 ,则函数 的最大值是 .
、 .
、正三棱锥 的底面边长为 ,侧棱长为 ,过点 作与侧棱 都相交的截面 ,那么, 周长的最小值是 .
、满足 的一组正整数 .
、用 表示正整数 的各位数字之和,则 .
二、解答题(共 题,合计 分)
、(20分)、设 ,且满足: ,求 的值.
、( 分)如图, 的内心为 , 分别是
的中点, ,内切圆 分别与边 相切于 ;证明: 三线共点.
、( 分)在电脑屏幕上给出一个正 边形,它的顶点分别被涂成黑、白两色;某程序执行这样的操作:每次可选中多边形连续的 个顶点(其中 是小于 的一个固定的正整数),一按鼠标键,将会使这 个顶点“黑白颠倒”,即黑点变白,而白点变黑;
、证明:如果 为奇数,则可以经过有限次这样的操作,使得所有顶点都变成白色,也可以经过有限次这样的操作,使得所有顶点都变成黑色;
、当 为偶数时,是否也能经过有限次这样的操作,使得所有的顶点都变成一色?证明你的结论.
解 答
、 .提示:这种四位数 的个数,就是不定方程 满足条件 , 的整解的个数;即 的非负整解个数,其中 ,易知这种解有 个,即总共有 个这样的四位数.(注:也可直接列举.)
、 . 提示:由条件得,
,
所以
,
故 ,而 ;
;
于是
;
由此得
.
、 .提示:设 ,则
,
直线 方程为
,
即 ,因为 ,则
,
即
,
代人方程得
,
于是点 在直线 上;
同理,若设 ,则 方程为
,
即点 也在直线 上,因此交点 的坐标为 .
、 .提示:由
所以,
,
即
,
当 ,即 时取得等号.
、 .提示:
.
、 .提示:作三棱锥侧面展开图,易知 ∥ ,且由周长最小,得 共线,于是等腰 , ,
,
即 , ,
,
所以 ,由 ,则
.
、 .提示:由于 是 形状的数,所以 必为奇数,而 为偶数, 设 , ,代人得
,
即
. ①
而 为偶数,则 为奇数,设 ,则
,
由①得,
, ②
则 为奇数,且 中恰有一个是 的倍数,当 ,为使 为奇数,且 ,只有 ,②成为
,
即 ,于是 ;
若 ,为使 为奇数,且 ,只有 ,②成为 ,即 ,它无整解;
于是 是唯一解: .
(另外,也可由 为偶数出发,使
为 的倍数,那么 是 的倍数,故 是 形状的偶数,依次取 ,检验相应的六个数即可.)
、 .提示:添加自然数 ,这样并不改变问题性质;先考虑由 到 这一千个数,将它们全部用三位数表示,得到集 ,易知对于每个 ,首位为 的“三位数”恰有 个: ,
这样,所有三位数的首位数字和为
.
再将 中的每个数 的前两位数字互换,成为 ,得到的一千个数的集合仍是 ,
又将 中的每个数 的首末两位数字互换,成为 ,得到的一千个数的集合也是 ,由此知
.
今考虑四位数:在 中,首位(千位)上,共有一千个 ,而在
中,首位(千位)上,共有一千个 ,因此
;
其次,易算出, . 所以,
.
、由
,
即
,
平方得
所以
,
即
,
所以
.
、如图,设 交于点 ,连 ,由于中位线 ∥ ,以及 平分 ,则 ,所以 ,因 ,得 共圆.所以 ;又注意 是 的内心,则
.
连 ,在 中,由于切线 ,所以
,
因此 三点共线,即有 三线共点.
、 证明:由于 为质数,而 ,则 ,据裴蜀定理,存在正整数 ,使
, ①
于是当 为奇数时,则①中的 一奇一偶.
如果 为偶数, 为奇数,则将①改写成:
,
令 ,上式成为 ,其中 为奇数, 为偶数.
总之存在奇数 和偶数 ,使①式成立;据①,
, ②
现进行这样的操作:选取一个点 ,自 开始,按顺时针方向操作 个顶点,再顺时针方向操作接下来的 个顶点……当这样的操作进行 次后,据②知,点 的颜色被改变了奇数次( 次),从而改变了颜色,而其余所有顶点都改变了偶数次( 次)状态,其颜色不变;称这样的 次操作为“一轮操作”,由于每一轮操作恰好只改变一个点的颜色,因此,可以经过有限多轮这样的操作,使所有黑点都变成白点,从而多边形所有顶点都成为白色;也可以经过有限多轮这样的操作,使所有白点都变成黑点,从而多边形所有顶点都成为黑色.
、当 为偶数时,也可以经过有限多次这样的操作,使得多边形所有顶点都变成一色.具体说来,我们将有如下结论:
如果给定的正多边形开初有奇数个黑点、偶数个白点,则经过有限次操作,可以将多边形所有顶点变成全黑,而不能变成全白;反之,如果给定的正多边形开初有奇数个白点、偶数个黑点,则经过有限次操作,可以将多边形所有顶点变成全白,而不能变成全黑;
为此,采用赋值法:将白点改记为“ ”,而黑点记为“ ”,改变一次颜色,相当于将其赋值乘以 ,而改变 个点的颜色,即相当于乘了 个(偶数个) ,由于 ;
因此当多边形所有顶点赋值之积为 ,即总共有奇数个黑点,偶数个白点时,每次操作后,其赋值之积仍为 ,因此无论操作多少次,都不能将全部顶点变白.
但此时可以变成全黑,这是由于,对于偶数 ,则①②中的 为奇数,设 是多边形的两个相邻顶点,自点 开始,按顺时针方向操作 个顶点,再顺时针方向操作接下来的 个顶点……当这样的操作进行 次后,据②知,点 的颜色被改变了偶数次( 次),从而颜色不变,而其余所有 个顶点都改变了奇数次( 次)状态,即都改变了颜色;再自点 开始,按同样的方法操作 次后,点 的颜色不变,其余所有 个顶点都改变了颜色;于是,经过上述 次操作后,多边形恰有 两个相邻顶点都改变了颜色,其余所有 个点的颜色不变.
现将这样的 次操作合并,称为“一轮操作”;每一轮操作,可以使黑白相邻的两点颜色互换,因此经过有限轮操作,总可使同色的点成为多边形的连续顶点;
于是当多边形开初总共有偶数个白点时,每一轮操作又可将相邻两个白点变成黑点,使得有限轮操作后,多边形所有顶点都成为黑色.
同理得,如果给定的正多边形开初总共有奇数个白点、偶数个黑点,经过有限次操作,可以使多边形顶点变成全白,而不能变成全黑;(只需将黑点赋值为“ ”,白点赋值为“ ”,证法便完全相同).
6. 高中数学竞赛题
我曾经参加过全国高中数学竞赛。初赛的题目比任何学校公开的数学考试的最后一题都难。建议你买一本高中数学竞赛题看一下,上面有很多例子。初赛的题目目标是让百分之五十的人题目意思都看不懂,让百分之九十九的人根本无从下手如何解题。只让百分之一的人能做出来。
7. 高中数学竞赛题
这个不是很难,关键是我们只需考虑x大于0的情况,因为x小于零和x大于零是一样的。
8. 河北省高二数学竞赛试题
有数列的题,一些求通项公式的呀。有三角函数、集合、平面几何、解析几何、平面向量、空间几何、空间向量、初等数论、排列组合等