初中数学论文题目
Ⅰ 我需要一些初中数学论文的题目
画自己小区的地图(平面直角坐标系)
研究调查一些数据拟合函数~
二进制分数(想起了西屋科学奖那篇p进制小数~)
停车场设计(平几)
一些有趣题目的深入探讨和反思……
Ⅱ 好一点的初中数学论文题目
卸党安装遇到这个问题怎么办?
我问教练:“教练,你说我以后能当教练吗?”其实我并不是想当教练,无非是没话找话问一句殉就淌
Ⅲ 初中数学论文题目
如何学写数学小论文
“ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
(1) 写什么
写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。
下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种:
①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;
如:探究大桥的热胀冷缩度
②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;
如:
一台饮水机创造的意想不到的实惠
③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法
如:
分式“家族”中的亲缘探究
如:
纸飞机里的数学
④对自己数学学习的某个章节、或某个内容的体会与反思
如:
“没有条件”的推理
如:
小议“黄金分割”
如:
奇妙的正五角星
(2) 怎样写
① 课题要小而集中,要有针对性;
② 见解要真实、独特,有感而发,富有新意;
③ 要用自己的语言表述自己要表达的内容
(四) 评价数学小论文的标准
什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。
“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。
例子:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
回答者: 谢昊笑 - 一级 2010-1-26 21:01
目前解题技巧类的不新颖了,关于教改和养成理念方面的较好。初一的论文重点放在学生习惯的培养上,虽然是老问题,但是写的前卫点,还是很吸引人的。我给你建议一个标题,你自己准备素材和内容吧。《如何在数学课堂教学中培养学生的主体意识》
回答者: taiyangcao2006 - 一级 2010-1-27 02:57
利用“想一想”,开发学生的思维、培养学生的学习兴趣。
新教材编排上版式活泼、图文并茂,内容上顺理成章、深入浅出,将枯燥的数学知识演变得生动、有趣,有较强的可接受性、直观性和启发性,教材安排的“想一想”对开发思维、培养兴趣有极大的帮助。如,在七年级数学第一章节中加入了"丰富的图形世界",从学生能看得见摸得着的实际物体出发,“想一想”引导学生动脑、并使学生进入了初中数学的一片新天地。在教学过程中,作为课程的执行者,我们应该对此加以强化。要善于运用幽默的语言、生动的比喻、有趣的例子、别开生面的课堂情境,激发学生的想的欲望。在教七年级数学“几何体”部分时,鼓励学生深入到生活中去寻找或制作教材中的几何体并拿到课堂上来。在寻找的过程中多想一想,学生就开始对几何图像有了感性的认识。当学生寻找、制作的东西成为课堂上的教具时,学生兴趣高涨,教学效果远比教师拿来现成的教具要好得多。又如七年级的“正方体的表面展开”这一问题,答案有多种可能性,此时,我们应给学生提供一个展示和发挥的空间,让学生自己制作一个正方体纸盒,再用剪刀沿棱剪开,展成平面,并用“冠名权”的方式激励学生去探索更多的可能性。在操作过程中,要求学生多想一想,不要习习惯性地只求一个答案。这样,不仅能开发学生的思维,调动了学生的积极性,而且也增强了学生的自信心,课堂上学生积极主动、兴趣盎然,无形中营造了一个活泼热烈、充满生命活力的教学氛围中学数学教学从“知识传授”的传统模式转变到“以学生为主体”的实践模式,着眼于数学思想方法的渗透和良好的思维品质的养成,注重学生创新精神和实践能力的培养,这既是实施素质教育的要求,也是新教材的精髓所在。
利用“试一试”,培养学生探究知识的能力,从而进一步提高学生的创新能力。
在新教材的试用过程中,我们可能会遇到一些暂时难以理解的问题,对新教材的编排会产生一些困惑。按照新课程标准,每学年的教学难度不是很明确,教师只能以教材中的例题和课后习题的程度,来指导自己的教学。这本也无可厚非,问题是新教材的习题配备,并没有注意按难易程度排列,有些练习、习题中的问题,比章节复习题中的问题还难。对此,我们不能轻易地进行否定,而应该多试一试,应该从创新教育的角度出发,创造性地去理解和使用新教材。如,七年级数学"绝对值"这一节的习题中提到“|a|”的问题,因为在此之前并未学习字母能表示数,所以学生难以理解。对于这个问题的处理有两种方法,一是可以把这部分题目挪到下一章去做;二是引导学生对a选取不同的值试一试,从这些不同的结果中去想、去探索、去归纳;三是从绝对值的概念出发,利用数轴求有多少个点到原点的距离等于|a|.第一种方法采取了回避困难的态度,这样做不利于学生良好的意志品质的养成,有悖于新教材的宗旨。我们应当选择第二或第三种方法,在尝试过程中激发学生的探索兴趣,培养学生独立解决问题的能力。又如七年级的“队列操练中的数学趣题”可以让学生自已动手编成小品,记下每一次的结果,通过试一试学会用数据说话,并能在乐趣中进一步认识到数学是有用的,可以用数学来解决一些实际问题,让学生更愿意去想、去试、去探索。
总之,在课堂教学中,我们应积极主动地对课程进行适当的修正和调适,灵活使用新教材,设计出新颖的教学过程,把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发他们的进取心。利用新教材中安排“读一读”“想一想”、“做一做”、“试一试”等内容,我们可以用这种富有弹性的课程设置,结合学生智力发展水平和发展要求的个体差异,有针对性地实施因材施教;利用新教材相对较为宽松的课时安排,选择更为合适的时机和内容,开展更多的社会实践活动,让学生将所学知识应用于生活,从“读”、“想”、“试”、“做”中体会数学的快乐;还可以通过多种方式将科学技术发展的新成果、新动向和新趋势,及时地应用在教学活动中,进一步体现数学的实用性等等。
在人才竞争日趋激烈的21世纪,在创新教育蓬勃开展的今天,社会对新教材充满了期望,学生对教师充满了期待。相信,在广大园丁的努力配合下,充分利用读、想、试、做等栏目,新教材必将如新世纪第一缕和熙的阳光,照耀着我国教育较为欠缺的创造性快快成长,让那些充满灵性的心智焕发出无限的创造力。
Ⅳ 初中数学教学论文题目有哪些
根据自己的教学实际,写的多着呢。所感/所思/说悟/教学随笔/课后反思等等
Ⅳ 初中数学教学论文题目有哪些
我们的新课程在征稿中, 对题目,论据等有不清楚的, 可以私信我
Ⅵ 初中数学小论文的题目(新颖的)
题目:关于集合数论分解之定义
Ⅶ 求一个初中数学论文题目
初中数学,很多题目的,这个好说
Ⅷ 适合初一学生写的数学小论文题目
生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。
数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
不过估计现在也没有用了。那么少的分要写那么多字。
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
现在中考网的初二学员中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
那怎样才能打好初一的数学基础呢?
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
(3)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
(5)注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。
有理数(什么是有理数;有理数的几种分类方法;有理数在生活中的体现……)
数轴(什么是数轴;数轴可以干哪些事;在生活中数轴有什么用处……)
棱柱(棱柱的定义;生活中何处可以见到棱柱;棱柱有哪几种类别……)
棱锥(同上);
七巧板(七巧板是如何形成的;七巧板的妙用;用七巧板可拼出多少个凸多边形,如何证明……);
三视图(不同情况下的三视图……)
Ⅸ 好一点的初中数学论文题目
1、数学中的研究性学习
2、数字危机
4、高斯分布的启示
5、a2+b2≧2ab的变形推广及应用
6、网络优化
7、泰勒公式及其应用
9、数学选择题的利和弊
10、浅谈计算机辅助数学教学
11、论研究性学习
12、浅谈发展数学思维的学习方法
13、关于整系数多项式有理根的几个定理及求解方法
14、数学教学中课堂提问的误区与对策
16、浅谈数学教学中的“问题情境”
17、市场经济中的蛛网模型
19、数学课堂差异教学
20、浅谈线性变换的对角化问题
21、圆锥曲线的性质及推广应用
22、经济问题中的概率统计模型及应用
23、通过逻辑趣题学推理
24、直觉思维的训练和培养
25、用高等数学知识解初等数学题
26、浅谈数学中的变形技巧
27、浅谈平均值不等式的应用
28、浅谈高中立体几何的入门学习
29、数形结合思想
30、关于连通性的两个习题
31、从赌博和概率到抽奖陷阱中的数学
32、情感在数学教学中的作用
33、因材施教 因性施教
34、关于抽象函数的若干问题
35、创新教育背景下的数学教学
36、实数基本理论的一些探讨
37、论数学教学中的心理环境
38、以数学教学为例谈谈课堂提问的设计原则
39、不等式证明的若干方法
40、试论数学中的美
41、数学教育与美育
42、数学问题情境的创设
43、略谈创新思维
44、随机变量列的收敛性及其相互关系
45、数字新闻中数学应用
46、微积分学的发展史
47、利用几何知识求函数最值
48、数学评价应用举例
49、数学思维批判性
50、让阅读走进数学课堂
51、开放式数学教学
52、浅谈中学数列中的探索性问题
53、论数学史的教育价值
54、思维与智慧的共享——从建构主义到讨论法教学
55、微分方程组中的若干问题
56、由“唯分是举”浅谈考试改革
57、随机变量与可测函数
58、二阶变系数齐次微分方程的求解问题
59、一种函数方程的解法
60、积分中值定理的再讨论
1、浅谈菲波纳契数列的内涵和应用价值
2、一道排列组合题的解法探讨及延伸
3、整除与竞赛
4、足彩优化
5、向量的几件法宝在几何中的应用
6、递推关系的应用
8、小议问题情境的创设
9、数学概念探索启发式教学
10、柯西不等式的推广与应用
11、关于几个特殊不等式的几种巧妙证法及其推广应用
12、一道高考题的反思
13、数学中的研究性学习
15、数字危机
16、数学中的化归方法
17、高斯分布的启示
18、 的变形推广及应用
19、网络优化
20、泰勒公式及其应用
22、数学选择题的利和弊
23、浅谈计算机辅助数学教学
24、数学研究性学习
25、谈发展数学思维的学习方法
26、关于整系数多项式有理根的几个定理及求解方法
27、数学教学中课堂提问的误区与对策
29、浅谈数学教学中的“问题情境”
30、市场经济中的蛛网模型
32、数学课堂差异教学
33、浅谈线性变换的对角化问题
34、圆锥曲线的性质及推广应用
35、经济问题中的概率统计模型及应用
36、通过逻辑趣题学推理
37、直觉思维的训练和培养
38、用高等数学知识解初等数学题
39、浅谈数学中的变形技巧
40、浅谈平均值不等式的应用
41、浅谈高中立体几何的入门学习
42、数形结合思想
43、关于连通性的两个习题
44、从赌博和概率到抽奖陷阱中的数学
45、情感在数学教学中的作用
46、因材施教与因性施教
47、关于抽象函数的若干问题
48、创新教育背景下的数学教学
49、实数基本理论的一些探讨
50、论数学教学中的心理环境
51、以数学教学为例谈谈课堂提问的设计原则
52、不等式证明的若干方法
53、试论数学中的美
54、数学教育与美育
55、数学问题情境的创设
56、略谈创新思维
57、随机变量列的收敛性及其相互关系
58、数字新闻中的数学应用
59、微积分学的发展史
60、利用几何知识求函数最值
61、数学评价应用举例
62、数学思维批判性
63、让阅读走进数学课堂
64、开放式数学教学
65、浅谈中学数列中的探索性问题
66、论数学史的教育价值
67、思维与智慧的共享——从建构主义到讨论法教学
68、 方程组中的若干问题
69、由“唯分是举”浅谈考试改革
70、随机变量与可测函数
71、二阶变系数齐次微分方程的求解问题
72、一种函数方程的解法
73、微分中值定理的再讨论
74、学生数学学习的障碍研究;
76、数学中的美;
77、数学的和谐和统一----谈论数学中的美;
78、推测和猜想在数学中的应用;
79、款买房问题的决策;
80、线性回归在经济中的应用;
81、数学规划在管理中的应用;
82、初等数学解题策略;
83、浅谈数学CAI中的不足与对策;
84、数学创新教育的课堂设计;
86、关于培养和提高中学生数学学习能力的探究;
87、运用多媒体培养学生
88、高等数学课件的开发
89、 广告效益预测模型;
90、最短路网络;
91、计算机自动逻辑推理能力在数学教学中的应用;
93、最优增长模型
94、学生数学素养的培养初探
96、 城市道路交通发展规划数学模型;
97、函数逼近
98、数的进制问题
99、无穷维矩阵与序列Bannch空间的关系
100、 多媒体课件教学设计----若干中小学数学教学案例
101、一维,二维空间到欧氏空间
102、初中数学新课程数与代数学习策略研究
103、初中数学新课程统计与概率学习策略研
105、数列运算的顺序交换及条件
106、歇定理的推广和应用
107、解析函数的各种等价条件及其应用
108、特征函数在概率论中的应用
109、数学史与中学教育
110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx
111、数学竟赛中的数论问题
112、新旧教材的对比与研究
114、随机变量分布规律的求法
115、简述概率论与数理统计的思想方法及其应用
116、无穷大量存在的意义
118、例谈培养数学思维的深刻性
120、从坐标系到向量空间的基
121 谈谈反证法
122、一致连续性的判断定理及性质
123、课堂提问和思维能力的培养
125、函数及其在证明不等式中的应用
126、极值的讨论及其应用
127、正难则反,从反面来考虑问题
128、实数的构造,完备性及它们的应用
129、数学创新思维的训练
130、简述期望的性质及其作用
131、简述概率论与数理统计的思想和方法
132、穷乘积
133、递推式求数列的通项及和
134、划归思想在数学中的应用
135、凸函数的定义性质及应用
136、行列式的计算方法
137、可行解的表式定理的证明
140、充分挖掘例题的数学价值和智力开发功能
141、数学思想方法的一支奇葩-----数学猜想初探
142、关于实变函数中叶果罗夫定理的鲁津定理的证明
143、于黎曼积分的定义
144、微分方程的历史发展
145、概率论发展史及其简单应用
147、数学教学中使用多媒体的几点思考
148、矩阵特征值的计算方法初探
149、数形结合思想及其应用
150、关于上、下确界,上、下极限的定义,性质及应用
151、复均方可积随机变量空间的讨论
155、欧几里得第五公设产生背景及其对数学发展影响
160、函数性质的应用
163、中数学新课程空间与图形学习策略与研究
167、函数的凸性及其在不等式中的应用
171、数学归纳法教学探究
174、关于全概率公式及其应用的研究
176、变量代换法与常微分方程的求解
188、不等式解法大观
189、谈谈“ 隐函数 ”
190、有限维矩阵的范数计算与估计
191、数学奥赛中数论问题的解题方法研究
193、微分方程积分因子的研究
195、关于泰勒公式
196、解析函数的孤立奇点的分类及其判断方法
197、最大模原理的推广及其应用
198、π的奥秘——从圆周率到统计
199、对现代信息技术辅助数学及其发展的几点思考
200、无理数e的发现及其应用
202、闭区间套定理的推广和应用
203、函数的上下极限及其应用
205、关于多值函数的解析理论探讨
208、比较函数法在常微分方程中的应用
209、数学分析的直观与严密
303、求随机函数的分布函数和分布密度的方法
304、条件期望的性质及其应用
308、凸函数的等价命题及其应用
310、有界变差函数的定义及其性质
311、初等函数的极值