当前位置:首页 » 语数英语 » 七年级上册数学题

七年级上册数学题

发布时间: 2020-11-21 13:22:20

『壹』 七年级上册数学计算题及答案,共150道

(1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47

(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79

(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48

(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51

(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59

(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48

(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48

(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95

(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98

(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62

(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44

(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19

(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12

(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57

(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61

(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25

(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93

(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59

(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34

(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50

(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99

(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91

(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78

(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30

(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54

(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91

(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41

(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78

(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74

(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83

(31) 39x+42y=5331
59x-y=5841
答案:x=99 y=35

(32) 29x+18y=1916
58x+y=2320
答案:x=40 y=42

(33) 40x+31y=6043
45x-y=3555
答案:x=79 y=93

(34) 47x+50y=8598
45x+y=3780
答案:x=84 y=93

(35) 45x-30y=-1455
29x-y=725
答案:x=25 y=86

(36) 11x-43y=-1361
47x+y=799
答案:x=17 y=36

(37) 33x+59y=3254
94x+y=1034
答案:x=11 y=49

(38) 89x-74y=-2735
68x+y=1020
答案:x=15 y=55

(39) 94x+71y=7517
78x+y=3822
答案:x=49 y=41

(40) 28x-62y=-4934
46x+y=552
答案:x=12 y=85

(41) 75x+43y=8472
17x-y=1394
答案:x=82 y=54

(42) 41x-38y=-1180
29x+y=1450
答案:x=50 y=85

(43) 22x-59y=824
63x+y=4725
答案:x=75 y=14

(44) 95x-56y=-401
90x+y=1530
答案:x=17 y=36

(45) 93x-52y=-852
29x+y=464
答案:x=16 y=45

(46) 93x+12y=8823
54x+y=4914
答案:x=91 y=30

(47) 21x-63y=84
20x+y=1880
答案:x=94 y=30

(48) 48x+93y=9756
38x-y=950
答案:x=25 y=92

(49) 99x-67y=4011
75x-y=5475
答案:x=73 y=48

(50) 83x+64y=9291
90x-y=3690
答案:x=41 y=92

(51) 17x+62y=3216
75x-y=7350
答案:x=98 y=25

(52) 77x+67y=2739
14x-y=364
答案:x=26 y=11

(53) 20x-68y=-4596
14x-y=924
答案:x=66 y=87

(54) 23x+87y=4110
83x-y=5727
答案:x=69 y=29

(55) 22x-38y=804
86x+y=6708
答案:x=78 y=24

(56) 20x-45y=-3520
56x+y=728
答案:x=13 y=84

(57) 46x+37y=7085
61x-y=4636
答案:x=76 y=97

(58) 17x+61y=4088
71x+y=5609
答案:x=79 y=45

(59) 51x-61y=-1907
89x-y=2314
答案:x=26 y=53

(60) 69x-98y=-2404
21x+y=1386
答案:x=66 y=71

(61) 15x-41y=754
74x-y=6956
答案:x=94 y=16

(62) 78x-55y=656
89x+y=5518
答案:x=62 y=76

(63) 29x+21y=1633
31x-y=713
答案:x=23 y=46

(64) 58x-28y=2724
35x+y=3080
答案:x=88 y=85

(65) 28x-63y=-2254
88x-y=2024
答案:x=23 y=46

(66) 43x+50y=7064
85x+y=8330
答案:x=98 y=57

(67) 58x-77y=1170
38x-y=2280
答案:x=60 y=30

(68) 92x+83y=11586
43x+y=3010
答案:x=70 y=62

(69) 99x+82y=6055
52x-y=1716
答案:x=33 y=34

(70) 15x+26y=1729
94x+y=8554
答案:x=91 y=14

(71) 64x+32y=3552
56x-y=2296
答案:x=41 y=29

(72) 94x+66y=10524
84x-y=7812
答案:x=93 y=27

(73) 65x-79y=-5815
89x+y=2314
答案:x=26 y=95

(74) 96x+54y=6216
63x-y=1953
答案:x=31 y=60

(75) 60x-44y=-352
33x-y=1452
答案:x=44 y=68

(76) 79x-45y=510
14x-y=840
答案:x=60 y=94

(77) 29x-35y=-218
59x-y=4897
答案:x=83 y=75

(78) 33x-24y=1905
30x+y=2670
答案:x=89 y=43

(79) 61x+94y=11800
93x+y=5952
答案:x=64 y=84

(80) 61x+90y=5001
48x+y=2448
答案:x=51 y=21

(81) 93x-19y=2
86x-y=1548
答案:x=18 y=88

(82) 19x-96y=-5910
30x-y=2340
答案:x=78 y=77

(83) 80x+74y=8088
96x-y=8640
答案:x=90 y=12

(84) 53x-94y=1946
45x+y=2610
答案:x=58 y=12

(85) 93x+12y=9117
28x-y=2492
答案:x=89 y=70

(86) 66x-71y=-1673
99x-y=7821
答案:x=79 y=97

(87) 43x-52y=-1742
76x+y=1976
答案:x=26 y=55

(88) 70x+35y=8295
40x+y=2920
答案:x=73 y=91

(89) 43x+82y=4757
11x+y=231
答案:x=21 y=47

(90) 12x-19y=236
95x-y=7885
答案:x=83 y=40

(91) 51x+99y=8031
71x-y=2911
答案:x=41 y=60

(92) 37x+74y=4403
69x-y=6003
答案:x=87 y=16

(93) 46x+34y=4820
71x-y=5183
答案:x=73 y=43

(94) 47x+98y=5861
55x-y=4565
答案:x=83 y=20

(95) 30x-17y=239
28x+y=1064
答案:x=38 y=53

(96) 55x-12y=4112
79x-y=7268
答案:x=92 y=79

(97) 27x-24y=-450
67x-y=3886
答案:x=58 y=84

(98) 97x+23y=8119
14x+y=966
答案:x=69 y=62

(99) 84x+53y=11275
70x+y=6790
答案:x=97 y=59

(100) 51x-97y=297
19x-y=1520
答案:x=80 y=39
这可是我找了半天才找出来的
选我为最佳答案吧!

『贰』 求25道七年级上册数学应用题 带答案的

1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.
此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.
根据题意得:0.8x-100=20,
解得:x=150.
答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.

2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10( 2960-x)=18( 2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时,
29分= 2960小时,25分= 2560,
则依据题意得:10( 2960-x)=18( 2560-x),
解得:x= 13,
则甲地到乙地的路程是15× 13+10×( 2960-13)=6.5km,
答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程

3.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.
依题意,得5.8-x=3x+0.6,
解得:x=1.3,
∴5.8-x=5.8-1.3=4.5.
答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.

4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为 x2,第一次的本息和为(100+100×x)元.
由题意,得(100+100×x-50)× x2+50+100x=63,
解得x=0.1或x= -135(舍去).
答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件

5.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)
依题意得x+(x+7)+x+(x+7)+2=100(3分)
解得x=21,(5分)
所以x+7=21+7=28;21+28+2=51
答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.

6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.
①当0≤x≤300时,顾客在两家超市购物都一样.
②当300<x≤500时,顾客在金帝超市购物能得更大优惠.
当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.
③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:
④当x=900时,顾客在两家超市购物都一样.
⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.

7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,
由题可得:20+0.85x=x-10,
解得:x=200.
答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解

8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.考点:一元一次方程的应用.专题:行程问题.分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一
解:设提速前速度为每小时x千米,则需时间为 240x小时,
依题意得:(x+10)( 240x- 2060)=240,
解得:x1=-90(舍去),x2=80,
因为80<100,所以能实现提速目标.
解法二
解:设提提速后行驶为x千米/时,根据题意,得 240x-10- 240x= 2060去分母.
整理得x2-10x-7200=0.
解之得:x1=90,x2=-80
经检验,x1=90,x2=-80都是原方程的根.
但速度为负数不合题意,所以只取x=90.
由于x=90<100.所以能实现提速目标.

9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.
由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,
解得:x=1.3,y=2.9.
故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.

10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,
依题意得:(4x-50)+x+2x=664.
解得:x=102.
答:严重缺水城市有102座.

11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).
(1)求目前广州市在校的小学生人数和初中生人数;
(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那么小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;
(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那么小学生人数为(2x+14)万,
则x+2x+14=128
解得x=38
答:初中生人数为38万人,小学生人数为90万人.
(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.
答:广州市政府要为此拨款8.3亿元.

12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,
依题意得:50x(1-0.8)=6,
解得:x=0.6.
答:故每支铅笔的原价是0.6元.

13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.
考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),
由题意知:0.2x+0.1(20-x)=22.5-20,
解得:x=5
∴A站去年客流量为:1.2×5=6(万人)
∴B站人数为:22.5-6=16.5(万人)
答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.

14.阅读下面对话:
小红妈:“售货员,请帮我买些梨.”
售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”
小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”
对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.
则有: 30x=301.5x+2.5,
解得:x=4,
1.5x=6.
答:梨和苹果的单价分别为4元/千克和6元/千克.

15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,
由题可得:2x+(16-x)×1=28
解得:x=12,
答:球队赢了12场,输了4场.

16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.
(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.
第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%
由题意得:x=x•(1-20%)+(400-x)•30%
解之得:x=240
(2)∵第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%= x2+120,
∴第三次参加球类活动的学生为:( x2+120)•(1-20%)+[400-( x2+120)]•30%= x4+180,
∴由 x4+180≥200得x≥80,
又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数.
答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.

17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.
(1)参加本次社会调查的学生共多少名?
(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;
(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4( x+48+3)=x,
解之得:x=28
答:参加本次社会调查的学生共28人.
(2)其租车方案为
①第一种车4辆,第二种车0辆;
②第一种车3辆,第二种车1辆;
③第一种车2辆,第二种车3辆;
④第一种车1辆,第二种车5辆;
⑤第一张车0辆,第二种车7辆.
比较后知:租第一种车3辆,第二种车1辆时费用最少,
其费用为1100元.

18.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.
由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600,
解得:x=50.
故这个数量是50个.

19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,
列方程得:x=4(452-x)-8,
解得:x=360.
当x=360时,452-x=92.

20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?
(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;
(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.
600x=400(1+5%),
可求得x=0.7.
(2)设该厂六,七两月产量平均增长的百分率为x.
5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:
(1+x)2= 648450=1.44,
1+x=1.2,
x=20%.

21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,
依题意得:70%•(x+2)-x=0.2
解得:x=4
答:该文具每件的进货价为4元.
近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?考点:一元一次方程的应用.专题:增长率问题.分析:应先根据96年的台数+4年一共增加的台数=2000年的台数,求得每年的增长量,进而让11600加3年增加的台数即为2003年宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台,
则:1040+(2000-1996)x=11600,
解得x=2640,
∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).
答:2003年宜宾市中小学装备计算机的总台数是19520台.

23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得
[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),
解这个方程得x=10.4.
答:该产品每件的成本价应降低10.4元.

24.为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?
某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;
(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,
则有:x+6=2(x-6),
∴x=18;
所以这批足球共有18个;
(2)设白块有y块,
则3y=5×12,
∴y=20,
所以白块有20块.

25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,
依题意得:3x=7(170-x),
解得:x=119,
170-x=51.
答:该年级的男生有119人,那么女生有51人.

望采纳谢谢。

『叁』 七年级上数学应用题及答案70道

小明参加了10场篮球赛。其中6.7.8.9场的分数为23.14.11.20.并且他前9场的平均分跟前五场的一样。请问小明版前5场一共拿权了多少分?
设前五场的分数为X,则(X+23+14+11+20)/9=X/5,X=17

『肆』 七年级人教版上册数学题

设中学捐的数量为X 则高中捐的数量为3500-X
所以有
120%X+115%(3500-X)=4125
5%X=100
解得X=2000
则高中所捐数量为1500
20%*2000=400
15%*1500=225

『伍』 初一数学上册奥数题及答案(50道以上)

我能帮你,抖抖抖体
啊·

『陆』 七年级上册数学练习题

七年级上册数学有理数精选练习题

第一章典型试题练习
1.1正数和负数
1、下列说法正确的是( )
A、零是正数不是负数 B、零既不是正数也不是负数
C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数
2、向东行进-30米表示的意义是( )
A、向东行进30米 B、向东行进-30米
C、向西行进30米 D、向西行进-30米
3、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
4、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?
1.2.1有理数分类
1、下列说法正确的是( )
A、正数、0、负数统称为有理数 B、分数和整数统称为有理数
C、正有理数、负有理数统称为有理数 D、以上都不对
2、-a一定是( )
A、正数 B、负数 C、正数或负数 D、正数或零或负数
3、下列说法中,错误的有( )
①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A、1个 B、2个 C、3个 D、4个
4、把下列各数分别填入相应的大括号内:
自然数集合{ …};
整数集合{ …};
正分数集合{ …};
非正数集合{ …};
有理数集合{ …};
5、简答题:
(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?
(3)有比-1大的负整数吗?有比1小的正整数吗?
(4)写出三个大于-105小于-100的有理数。
1.2.2
1、数轴上与原点距离是5的点有___个,表示的数是___。
2、已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有______。
3、在数轴上,点A、B分别表示-5和2,则线段AB的长度是___。
4、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是___.
1.2.3相反数
1、-(-3)的相反数是___。
2、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是___。
3、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=___。
4、一个数a的相反数是非负数,那么这个数a与0的大小关系是a___0.
5、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是___。
6、下列结论正确的有( )
①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个 B、3个 C、4个 D、5个
7、如果a=-a,那么表示a的点在数轴上的什么位置?
1.2.4绝对值
1、化简:
___;___;___。
2、比较下列各对数的大小:
-(-1)___-(+2);___; ___; ___-(-2)。
3、①若,则a与0的大小关系是a___0;
②若,则a与0的大小关系是a___0。
4、下列结论中,正确的有( )
①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
A、2个 B、3个 C、4个 D、5个
5、在数轴上点A在原点的左侧,点A表示有理数a,求点A到原点的距离。
6、求有理数a和的绝对值。
1.3.1有理数加法
1、(1)绝对值小于4的所有整数的和是________;
(2)绝对值大于2且小于5的所有负整数的和是________。
2、若,则________。
3、已知且a>b>c,求a+b+c的值。
4、若1<a<3,求的值。
5、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.
10袋大米共超重或不足多少千克?总重量是多少千克?
1.3有理数的加减法
1、下列各式可以写成a-b+c的是( )
A、a-(+b)-(+c) B、a-(+b)-(-c) C、a+(-b)+(-c) D、a+(-b)-(+c)
2、计算:
(1) (2)
(3)
3、若则________。
4、若x<0,则等于( )
A、-x B、0 C、2x D、-2x
5、下列结论不正确的是( )
A、若a>0,b<0,则a-b>0 B、若a<0,b>0,则a-b<0
C、若a<0,b<0,则a-(-b)>0 D、若a<0,b<0,且,则a-b>0.
6、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
1.4.1有理数的乘法
1、的倒数的相反数是___。
2、已知两个有理数a,b,如果ab<0,且a+b<0,那么( )
A、a>0,b>0 B、a<0,b>0 C、a,b异号 D、a,b异号,且负数的绝对值较大
3、计算:
(1) (2)
(3); (4)
6、已知求的值。
7、若a,b互为相反数,c,d互为倒数,m的绝对值是1,求的值。
1.4.2有理数的除法
1、计算:
(1);(6).
2、如果(的商是负数,那么( )
A、异号 B、同为正数 C、同为负数 D、同号

『柒』 七年级上数学应用题及答案70道

1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。

9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。

根据题意得:【1-15%】X+【1+25%】【2300-X】=2300
解之得:931
答:下半年生产931台。
10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m

11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
慢马每天走150里,快马每天走240里,慢马先走十二天也就说明慢马与快马出发前的距离为150×12=1800里,然后快马出发,快马每天走240里,但是当快马追赶慢马的时候,慢马也在行走所以用快马的速度减去慢马的速度240-150=90里,这就是快马一天的追赶速度,快马与慢马之间相差1800里,而快马一天追赶90里,所以1800÷90=20天就是慢马追上快马的天数

12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。

【解】设每箱有x个产品

5台A型机器装:8x+4
7台B型机器装:11x+1

因为(8x+4)/5=(11x+1)/7+1

所以:x=12

所以每箱有12个产品

13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.
1分钟=60秒
设火车长度为x米,则根据题意可以得到
火车的速度为(1000+x)/60
因此[(1000+x)/60]*40=1000-2x
解得x=125
(1000+x)/60=(1000+125)/60=1125/60=18.75
所以火车速度为18.75米每秒,长度为125米

16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数

2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母

17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?

由已知,糖相当于一个公比为2的等比数列An,并且有An=2^(N-1)
要求从几格开始的连续三个中共有448粒,设这一格糖数为An,由等比数列求和公式
[An(1-2^3)]/(1-2)=448,解得An=64=2^(N-1),得N=7
故从第7格开始的连续三个中共有448粒

18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?

解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?

设懂汉语的X人,则英语的为3X+3人
懂英语的,加懂汉语的肯定大于等于30-10
3X+3+X >= 30-10 (大于等于)
懂英语的肯定不超过30-10,即小于等于
3X+3 <= 30-10
17/4 <= X <=17/3
得X=5人 (X必须得是整数)
则3X+3=18人
即懂英又懂汉的则为 18+5-20=3人

20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

设第一套的成本是X
X*[1+25%]=135
X=108

盈利:135-108=27元

设第二套的成本是Y

Y[1-25%]=135
Y=180

亏损:180-135=45元

所以,总的是亏了,亏:45-27=18元

21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
设:需要X只玻璃杯
3*3*3.14*10*X = 5*5*3.14*35
X = 5*5*35/3*3*10
X = 9.7
答:需要10只玻璃杯

22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?

设总工作量是x,师傅的效率是x/4,徒弟的效率是x/6,总效率是5x/12,徒弟一天干了x/6剩下5x/6,那么他们共同完成的时间是5x/6除以5x/12得2天,说明总共用了3 天每天是150元师傅和徒弟的效率比试3:2那么共同2天的钱应该3:2分师傅得得钱是180元,徒弟的钱是120+150=270元

23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?

解:设四月份节约x千克。
x+(1+20%)x+(1+20%)x+25%*(1+20%)x=3700
x+1.2x+1.2x+0.25*1.2x=3700
3.7x=3700
x=1000
6月份=四月份*(1+20%)(1+25%)
那么就等于:
1000*(1+20%)*(1+25%)=3700(千克)
经检验,符合题意。
答:该食堂六月份节约煤3700千克。

24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?

90/分 是每分钟90米吗?下面就是以90米每分的速度计算的 90米/分=1.5米/秒
从排头到排尾的时间为t,
1.5t+2X1.5t=450 t=100秒
在从排尾到排头的时间为t1
1.5t+450=2 X 1.5t t=300秒
所以总共需要400秒

26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?

解 设原价为X元,则现价为(X-0.3)元
36除X=36除(X-0.3)-4
这样解麻烦死了,一般楼上的解不出来才让你解
我的方法:解 设原价为X元,则现价为(X-0.3)元
36/X乘0.3=4乘(X-0.3)
10.8=4X的平方-1.2X
2.7=X(X-0.3)
X=1.8

27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?

1、设:两人x分钟后相遇
(360-240)x=400
120x=400
x=400/120
x=10/3
两人一共跑了(360+240)*10/3/400=5圈

2、
应该是:“两人同时同地反向跑”吧

设:两人x分钟后相遇
(360+240)x=400
600x=400
x=400/600
x=2/3
2/3分钟=40秒

28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?

可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时

29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)

设需要t秒,设那段时间小车行走的距离为s1=30.56t(110km/h=30.56m/s) 卡车 s2=27.78t(100km/h=27.78m/s) 而小车要超过卡车需要比卡车多走12+4*2=20米。即s1=s2+20代入后得t=7.2秒。

30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)

=(340+20)*4/2-20*4=640(米)

式中20是汽车的速度 20m/s=72km/h

声波的速度为340m/s
车速为72km/h=20m/s
声波4秒走340*4=1360m
车4秒走 20*4=80m
设听到声音时汽车距山谷x米
则2x=1360-80
x=640

31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?

设答对了x题
4x-(25-x)=85
5x=110
x=22
答对了22题

32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

1.解:在一个底面直径5cm、高18cm的圆柱形瓶内装满水,水的容积为:V1=18*π (5/2)^2=(225/2)π=112.5π (注:^2是平方的意思,这是电脑上面的写法)
一个底面直径6cm、高10cm的圆柱形玻璃瓶,能装下的水的容积是:V2=10*π(6/2)^2=90π;
显然V1>V2,所以不能完全装下,第一个圆柱形瓶内还剩22.5π的水;
设第一个瓶内水面还高Xcm,建立方程如下:
X*π(5/2)^2=22.5π
解得X=3.6
所以第一个瓶内水面还有3.6cm的高度

33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。

解:设只会下围棋的人有X个。
根据题意有如下方程:
(45-5-5-X)+5=3.5(X+5)
40-X=3.5X+17.5
X=5
所以只会下围棋的人有5个
答:只会下围棋的人有5个

34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
丙同学说得对,理由如下:

解:设某同学得了N分,选对了X题,那么不选或选错的就是25-X;
那么得分N=4X-1*(25-X)=5X-25=5(X-5)
所以显然,不管选对了多少题,那么得分永远是5的倍数;
所以3个同学中,只有丙同学说得对。

35.某水果批发市场香蕉的价格如下
购买香蕉数 不超过20kg 20kg以上但不超过40kg 40kg以上
每千克价格 6RMB 5RMB 4RMB
张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?
设买香蕉数分别为 x 和 y
则有方程
6x+5y=264
x + y=50
得x= 14 y=36

平均是264/50大于5元。所以只能是单价6和5或者6和4的组合。两种方程解出来。结果一看就知

我先写这么多,希望楼主采纳,我还会快快更新的。

『捌』 七年级上册数学试题

七年级下数学期末测试题

一、选择题:(每小题3分,共30分)
1.化简 的结果是( ).
A.0 B. C. D.
2.如果实数x,y,满足 ,那么 的值等于( ).
A. B. C.-4 D.4
3.以下语句是命题的是( ).
A.以C点作AB的平行线
B.连结AB
C.如果一个数能被3整除,那么它的末位数一定是3
D.直线上两点和它们之间的部分叫线段吗?
4.如图1,射线OA表示的方向为( ).

图1
A.北偏东30° B.北偏西30°
C.西偏北30° D.东偏北30°
5.如果两条平行线和第三条直线相交,那么一组同旁内角的平分线互相( ).
A.垂直 B.平行
C.重合 D.相交但不垂直
6.下列运算结果为负数的是( ).
A. B.
C. D.
7.用科学记数法表示0.00032,正确的是( ).
A. B.
C. D.
8. 是一个完全平方式,则m的值等于( ).
A.36 B.12 C.-12 D.12或-12
9.如图2所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有( ).

图2
A.2个 B.3个 C.4个 D.1个
10.若 ,且p>0,q<0,那么a、b必须满足的条件是( ).
A.a、b都是正数 B.a、b异号,且正数的绝对值较大
C.a、b都是负数 D.a、b异号,且负数的绝对值较大

二、判断题:(每小题2分,共10分)
1. ; ( )
2.相等的角是对顶角; ( )
3. ; ( )
4. ; ( )
5.若 , ,则 . ( )

三、填空题:(每小题2分,共14分)
1. ________;
2.已知被除式是 ,商式是 ,余式是-1,则除式为________;
3.不等式 的解集为________;
4.一个角的补角比这个角的余角大________;
5.如图3,直线a、b被直线AB所截,∠1=∠2,且a‖b,若∠ABC=60°,则∠1=________;
6.①89°48′36〃=________°; ②127°20′÷5=________;
7.若线段AB长为a cm,延长AB到C,使BC=2AB,D为线段AC的中点,则线段CD长为________.

四、解答题:
1.计算:(每小题4分,共12分)
(1) ;
(2) ;
(3) .
2.解方程:(4分)

3.解方程组:(4分)

4.求不等式(2x-3)(2x+3)>4(x-2)(x+3)的正整数解.(5分)
5.求不等式组的解集,并在数轴上表示解集.(5分)

6.有一批零件共420个,甲先做2天,乙加入合作,再作2天完成;若乙先做2天,甲加入合作,再做3天完成,求甲、乙二人每天各做多少个零件.
7.已知:线段a、b,如图4,用直尺,圆规画一线段,使它等于2a-b.

图4
8.已知角 与角 互补,并且 的 比 小于20°,求 、 的大小.
9.已知:如图5,∠1=∠2,∠3=∠4.
求证:AC平分∠BAD.

图5

参考答案
一、1.B 2.B 3.C 4.B 5.A 6.D 7.A 8.D 9.B 10.B
二、1.√ 2.× 3.√ 4.× 5.×
三、1. 2. 3. 4.90° 5.60°
6.①89.81 ②25°28′ 7.
四、1.(1)4 (2) (3)
2.x=-1 3. 4.x=1、2、3 5.-7≤x<2
6.甲做90个,乙做30个 7.略 8.120°,60°
9.证CD‖AB,∴ ∠3=∠BAC,又∵ ∠3=∠4,∴ ∠4=∠BAC,∴ AC平分∠BAD

『玖』 初一上册100道数学计算题及答案。

2x+17=35
3x-67=11
12+8x=52
0.8x-4.2=2.2
2x+5=10
3x-15=75
4x+40=320
3x+77=122
5x-1.6=0.6
6x-4=20
10x-0.6=2.4
500-12x=140
1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57

热点内容
四年级上册数学第四单元测试卷 发布:2025-09-17 01:12:32 浏览:660
师德师风考核实施方案 发布:2025-09-16 22:50:26 浏览:234
对英语怎么说 发布:2025-09-16 22:05:57 浏览:986
一年级上册语文拼音练习 发布:2025-09-16 21:14:15 浏览:472
英语碟 发布:2025-09-16 19:47:24 浏览:412
什么开放 发布:2025-09-16 17:40:01 浏览:800
面包的英语怎么写 发布:2025-09-16 16:23:11 浏览:778
课堂教学调查问卷 发布:2025-09-16 15:20:04 浏览:965
地理坐标符号 发布:2025-09-16 10:17:44 浏览:938
幼儿教师师风师德演讲稿 发布:2025-09-16 07:48:26 浏览:745