数学二
『壹』 考研数学二范围(同济第六版)
1、考研数学二只考高等数学和线性代数,概率和数理统计不考。
2、具体情况:
(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。
(2)线性代数(分值比例占总分22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
(1)数学二扩展阅读:
考研数学二大纲之高等数学
一、函数、极限、连续
1、考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;
函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型 初等函数的连续性;闭区间上连续函数的性质。
2、考试要求
(1)、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
(2)、了解函数的有界性、单调性、周期性和奇偶性。
(3)、理解复合函数及分段函数的概念了解反函数及隐函数的概念。
(4)、掌握基本初等函数的性质及其图形,了解初等函数的概念。
(5)、 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
(6)、掌握极限的性质及四则运算法则。
(7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
(8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
(9)、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分
1、考试要求
(1)、 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
(2)、 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
(3)、了解高阶导数的概念,会求简单函数的高阶导数。
(4)、 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
(5)、 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理。
(6)、掌握用洛必达法则求未定式极限的方法。
(7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
(8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
(9)、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。
三、一元函数积分
1、考试内容
原函数和不定积分的概念;不定积分的基本性质 基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;
不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用
2、考试要求
(1)、理解原函数的概念,理解不定积分和定积分的概念。
(2)、 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
(3)、 会求有理函数、三角函数有理式和简单无理函数的积分。
(4)、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
(5)、了解反常积分的概念,会计算反常积分。
(6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
四、多元函数微积分学
1、考试要求
(1)、 了解多元函数的概念,了解二元函数的几何意义。
(2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
(3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。
(4)、 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.
(5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
五、常微分方程
1、考试内容
常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。
2、考试要求
(1)、了解微分方程及其阶、解、通解、初始条件和特解等概念。
(2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。
(3)、会用降阶法解微分方程。
(4)、理解二阶线性微分方程解的性质及解的结构定理。
(5)、 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
(6)、 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。
(7)、会用微分方程解决一些简单的应用问题。
考研数学二大纲之线性代数
一、行列式
1、考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
2、考试要求
(1)、了解行列式的概念,掌握行列式的性质.
(2)、会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
1、考试内容
矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。
2、考试要求
(1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
(2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
(3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
(4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
(5)、了解分块矩阵及其运算.
三、向量
1、考试内容
向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法
2、考试要求
(1)、解n维向量、向量的线性组合与线性表示的概念.
(2)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
(3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
(4)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系
(5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
四、线性方程组
1、考试内容:
线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。
2、考试要求
(1)、会用克莱姆法则。
(2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
(3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。
(4)、理解非齐次线性方程组的解的结构及通解的概念。
(5)、会用初等行变换求解线性方程组。
五、矩阵的特征值和特征向量
1、考试内容
矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。
2、考试要求
(1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
(2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。
(3)、理解实对称矩阵的特征值和特征向量的性质。
六、二次型
1、考试内容
二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。
2、考试要求
(1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。
(2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。
(3)、理解正定二次型、正定矩阵的概念,并掌握其判别法。
『贰』 数学一,数学二的区别
数学一主要对应理工科;数学二主要对应农学、对应经济学
数学一范围
1. 高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程)
2. 线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型);
3. 概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。
数学二范围
1. 高等数学(函数、极限、连续、一元函数微积分学、常微分方程);
2. 线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。
(2)数学二扩展阅读:
(一)试卷满分及考试时间
1.试卷满分为150分
2.考试时间为180分钟。
(二)答题方式
1.答题方式为闭卷
2.笔试。
(三)试卷内容结构
1.高等数学 78%
2.线性代数 22%
针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三。
一、须使用数学一的招生专业
1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2、授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
三、须选用数学一或数学二的招生专业(由招生单位自定)
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。
四、须使用数学三的招生专业
1、经济学门类的各一级学科。
2、管理学门类中的工商管理、农林经济管理一级学科。
3、授管理学学位的管理科学与工程一级学科。
(3)数学二扩展阅读:
数一考试科目:高等数学、线性代数、概率论与数理统计
形式结构:
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
高等数学 56%
线性代数 22%
概率论与数理统计22%
四、试卷题型结构
试卷题型结构为:
单选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
数二考试科目:高等数学、线性代数
形式结构:
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
高等数学 78%
线性代数 22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
数三考试科目:微积分、线性代数、概率论与数理统计
形式结构:
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
2、答题方式
答题方式为闭卷、笔试.
3、试卷内容结构
微积分 56%
线性代数 22%
概率论与数理统计 22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
『肆』 数学一,数学二,数学三的区别。
三类数学试卷最大的区别在对于知识面的要求上:数学一最广,数学三其次,数学二最低。
考试内容:
数学一:
①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
数学二:
①高等数学(函数、极限、连续、一元函数微积分学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量)。
数学三:
①微积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
适用专业:
数学(一)适用的招生专业为:
(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。
(2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。
数学(二)适用的招生专业为:
工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。
数学(一)、数学(二)可以任选其一的招生专业为:
工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。
数学(三)适用的招生专业为:
(1)经济学门类的理论经济学一级学科中所有的二级学科、专业。
(2)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国际贸易学、劳动经济学、国防经济
(3)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。
(4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。
『伍』 考研数学一和数学二哪个更难
总体来说数学一更难些,数学一要复习的范围更多,而且考数学一的专业对数学的要求更高点。但是数学二考试范围窄,所以考的也更深。根据以往的情况来看,普遍数学一更难点。
(5)数学二扩展阅读:
一、须使用数学一的招生专业
1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2.授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
三、须选用数学一或数学二的招生专业(由招生单位自定)
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。
四、须使用数学三的招生专业
1.经济学门类的各一级学科。
2.管理学门类中的工商管理、农林经济管理一级学科。
3.授管理学学位的管理科学与工程一级学科。
『陆』 考研数学一和数学二的区别
1、数学一:
①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程)
②线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型)
③概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。
数学二:
①高等数学(函数、极限、连续、一元函数微积分学、常微分方程)
②线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。
一般情况下,工科类的为数学一和数学二:
【考数一的专业】
其中工学类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科和专业,以及授予工学学位的管理科学与工程的一级学科均要求使用数学一考试试卷。
【考数二的专业】
而工学类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中的二级学科和专业均要求使用是数学二考试试卷。
除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比如材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科则选取数学一,要求较低的则选取数学二。
【考数三的专业】
经济类和管理类的为数学三,经济类和管理类包括经济学类的各一级学科、管理学类中的工商管理、农业经济管理的一级学科和授予管理学学位的管理科学与工程的一级学科。
(6)数学二扩展阅读
全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。
思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。
选拔要求因层次、地域、学科、专业的不同而有所区别。考研国家线划定分为A、B类,其中一区实行A类线,二区实行B类线。
一区包括:北京、天津、河北、山西、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、重庆、四川、陕西。
二区包括:内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆。
『柒』 考研 数学二 具体考什么内容
考研数学二的具体内容会因为地点、时间、政策等的变化而有所变化,但考试的大纲一般包括高等数学和线性代数。
数二大纲:
考试科目:高等数学、线性代数
形式结构:
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
高等数学 78%
线性代数 22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
高等数学(函数、极限、连续):
考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,
函数关系的建立 数列极限与函数极限的定义及其性质 ,函数的左极限和右极限 ,无穷小量和无穷大量的概念及其关系 ,无穷小量的性质及无穷小量的比较 ,极限的四则运算,
极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。
拓展资料:
数三大纲:
考试科目:微积分、线性代数、概率论与数理统计
形式结构:
试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
答题方式:
答题方式为闭卷、笔试.
试卷内容结构:
微积分 56%
线性代数 22%
概率论与数理统计 22%
试卷题型结构为:
单项选择题选题8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
考研数学 网络
『捌』 2015考研大纲数学二和数学一的区别
1、考试科目不同
数学一:高等数学、线性代数、概率论与数理统计
数学二:高等数学、线性代数
2、适用专业不同
(1)须使用数学一的招生专业
工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
以及授予工学学位的管理科学与工程的一级学科均要求使用数学一考试试卷。
(2)须使用数学二的招生专业
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比如材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科则选取数学一,要求较低的则选取数学二。
3、分值设置不同:
数学一:高数56%、线性代数22%、概率统计22%
数学二:高数78%、线性代数22%、不考概率统计
『玖』 考研数学一二三怎么区别
数学一是考研数学一是考研数学中难度最大,范围最广的。数学一的考试科目包括高等数学、线性代数、概率统计三科。其中高等数学占比百分之五十六;线性代数占比百分之二十二;概率统计占比百分之二十二;
数学二是考研数学二是考研数学中考试范围最小,但是高等数学占比最高的。考研数学二的考试科目包括高等数学和线性代数其中高等数学占比百分之七十八;线性代数占比百分之二十二。
数学三是考研数学三是考研数学中考试难度较简单的。考研数学三的考试科目与数学一完全一样,各科目的分值占比也与考研数学一完全一样。但是难度相对于考研数学一而言较为简单。
这三者区别是:
1、数学一考得比较全面,高数,线代,概论都考,而且题目偏难。
2、数二不考概论,而且题目较数学一容易。
3、数三考得也很全面,题目的难度不比数一简单多少。
4、在专业方面,工学类专业的为数一、数二,学校的不同限定了究竟是考数一还是数二,经济学和管理学类专业的为数学三。
5、在难度方面,数一最难,其次是数二,最后是数三。数三照比前两者是稍微简单些,但是考研数学毕竟是考研数学,难度都不容小觑。
6、数学一需要学习的内容最多,高数,线性代数以及概率都要考,其中的考点也考察的很全面,书中删减的,不需要学习的内容特别少。
7、数学二只考察高数和线性代数两本书,但是其中考题的难度是很大的。
8、数学三考察的书目与数学一相同,其中有一些数一学习考察的内容数三是不需要掌握的,但是数学三与数学一需要学习的内容是相当之多的,而数学二虽是少学了一本书的内容,但是难度却是很大的。
(9)数学二扩展阅读:
根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:
一、须使用数学一的招生专业
1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程。
测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2、授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
三、须选用数学一或数学二的招生专业(由招生单位自定)
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。
四、须使用数学三的招生专业
1、经济学门类的各一级学科。
2、管理学门类中的工商管理、农林经济管理一级学科。
3、授管理学学位的管理科学与工程一级学科。
『拾』 考研数学二考什么
数学二考试科目:高等数学、线性代数
高等数学:同济六版高等数学中除内了第七章微容分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面则不考。
线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
(10)数学二扩展阅读:
考试要求介绍:
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。