六年级数学题及答案
❶ 六年级数学奥数题及答案
你干吗不去买奥数题
已知关于X的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了某一项系数的符号,误求得两根为-1和4 ,那么a分之(2b+3c)=几
甲看错了二次项系数,设他所解的方程为a′x2+bx+c=0,于是有:
2+4=-b/a′,
2×4=c/a′,
∴-3/4=b/c........ ①
设乙看错了一次项系数的符号,则他所解的方程为ax^2-bx+c=0.
于是-1+4=b/a......... ②
由①,②知,
△=b^2-4ac=b^2-4*b/3*(-4b/3)
=25/9b^2≥0,
与题设矛盾.
故乙看错的只是常数项,即他所解的方程为ax2+bx-c=0,则
-1+4=-b/a
b/a=-3........③
由①,③可知:
(2b+3c)/a=(2b-4b)/a=-2b/6=a=6.
❷ 六年级数学,10道简便计算题带答案谢谢哦∩_∩
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
❸ 六年级数学难题(练习题,附答案)
例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____.(安徽省1997年小学数学竞赛题)
解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。
由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75.
再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32.
故知,修改后的六位数是970425.
7. 在三位数中,个位、十位、百位都是一个数的平方的共有 个。
【答案】48
【解】百位有1、4、9三种选择,十位、个位有0、1、4、9四种选择。满足题意的三位数共有
3×4×4=48(个)。
12. 已知三位数的各位数字之积等于10,则这样的三位数的个数是 _____ 个.
【答案】6
【解】 因为10=2×5,所以这些三位数只能由1、2、5组成,于是共有 =6个.
12. 下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那么A2与A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那么有A2+A5=250-74-76-50-25=25.
【提示】上面的推导完全正确,但我们缺乏方向感和总体把握性。
其实,我们看到这样的数阵,第一感觉是看到这里5个50并不表示10个数之和,而是这10个数再加上内圈5个数的和。这一点是最明显的感觉,也是重要的等量关系。
再“看问题定方向”,要求第2个数和第5个数的和,
说明跟内圈另外三个数有关系,而其中第6个数和第8个数的和是50-25=25,
再看第3个数,在加两条直线第1、2、3、4个数和第9、3、5、10个数时,重复算到第3个数,
好戏开演:
74+76+50+25+第2个数+第5个数=50×5
所以 第2个数+第5个数=25
一、填空题:
1 满足下式的填法共有 种?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本题相当于求两个两位数a与b之和不小于100的算式有多少种。
a=10时,b在90 99之间,有10种;
a=11时,b在89 99之间,有11种;
……
a=99时,b在1 99之间,有99种。共有
10+11+12+……99=4905(种)。
【提示】算式谜跟计数问题结合,本题是一例。数学模型的类比联想是解题关键。
4 在足球表面有五边形和六边形图案(见右上图),每个五边形与5个六边形相连,每个六边形与3个五边形相连。那么五边形和六边形的最简整数比是_______ 。
【答案】3∶5。
【解】设有X个五边形。每个五边形与5个六边形相连,这样应该有5X个六边形,可是每个六边形与3个五边形相连,即每个六边形被数了3遍,所以六边形有 个。
二、解答题:
1.小红到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是2元钱3个,白球原价是2元钱5个.新年优惠,两种球的售价都是4元钱8个,结果小红少花了5元钱,那么,她一共买了多少个球?
【答案】150个
【解】
用矩形图来分析,如图。
容易得,
解得:
所以 2x=150
2.22名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有一名男老师,那么在这22人中,共有爸爸多少人?
【答案】5人
【解】家长和老师共22人,家长比老师多,家长就不少于12人,老师不多于10人,妈妈和爸爸不少于12人,妈妈比爸爸多,妈妈不少于7人.女老师比妈妈多2人,女老师不少于7+2=9(人).女老师不少于9人,老师不多于10人,就得出男老师至多1人,但题中指出,至少有1名男老师,因此,男老师是1人,女老师就不多于9人,前面已有结论,女老师不少于9人,因此,女老师有9人,而妈妈有7人,那么爸爸人数是:22-9-1-7=5(人) 在这22人中,爸爸有5人.
【提示】妙,本题多次运用最值问题思考方法,且巧借半差关系,得出不等式的范围。
正反结合讨论的方法也有体现。
3.甲、乙、丙三人现在岁数的和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多大岁数?
【答案】32岁
【解】如图。
设过x年,甲17岁,得:
解得 x=10,
某个时候,甲17-10=7岁,乙7×2=14岁,丙38岁,年龄和为59岁,
所以到现在每人还要加上(113-59)÷3=18(岁)
所以乙现在14+18=32(岁)。
7. 甲、乙两班的学生人数相等,各有一些学生参加数学选修课,甲班参加数学选修课的人数恰好是乙班没有参加的人数的1/3,乙班参加数学选修课的人数恰好是甲班没有参加的人数的1/4。那么甲班没有参加的人数是乙班没有参加的人数的几分之几?
【答案】
【解】:设甲班没参加的是4x人,乙班没参加的是3y人
那么甲班参加的人数是y人,乙班参加的人数是x人
根据条件两班人数相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那么甲班没有参加的人数是乙班没有参加的人数的
【另解】列一元一次方程:可假设两班人数都为“1”,设甲班参加的为x,则甲班未参加的为(1-x);则乙班未参加的为3x,则乙班参加的为(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、设而不求、量化思想都有了,这道题不错。
目标班
名校真卷七
一、填空题:
31 满足下式的填法共有 种?
口口口口-口口口=口口
【答案】4905。
【解】由右式知,本题相当于求两个两位数a与b之和不小于100的算式有多少种。
a=10时,b在90 99之间,有10种;
a=11时,b在89 99之间,有11种;
……
a=99时,b在1 99之间,有99种。共有
10+11+12+……99=4905(种)。
【提示】算式谜跟计数问题结合,本题是一例。数学模型的类比联想是解题关键。
34 在足球表面有五边形和六边形图案(见右上图),每个五边形与5个六边形相连,每个六边形与3个五边形相连。那么五边形和六边形的最简整数比是_______ 。
【答案】3∶5。
【解】设有X个五边形。每个五边形与5个六边形相连,这样应该有5X个六边形,可是每个六边形与3个五边形相连,即每个六边形被数了3遍,所以六边形有 个。
36 用方格纸剪成面积是4的图形,其形状只能有以下七种:
如果用其中的四种拼成一个面积是16的正方形,那么,这四种图形的编号和的最大值是______.
【答案】19.
【解】为了得到编号和的最大值,应先利用编号大的图形,于是,可以拼出,由:(7),(6),(5),(1);(7),(6),(4),(1);(7),(6),(3),(1)组成的面积是16的正方形:
显然,编号和最大的是图1,编号和为7+6+5+1=19,再验证一下,并无其它拼法.
【提示】注意从结果入手的思考方法。我们画出面积16的正方形,先涂上阴影(6)(7),再涂出(5),经过适当变换,可知,只能利用(1)了。
而其它情况,用上(6)(7),和(4),则只要考虑(3)(5)这两种情况是否可以。
40 设上题答数是a,a的个位数字是b.七个圆内填入七个连续自然数,使每两个相邻圆内的数之和等于连线上的已知数,那么写A的圆内应填入_______.
【答案】A=6
【解】如图所示:
B=A-4,
C=B+3,所以C=A-1;
D=C+3,所以D=A+2;
而A +D =14;
所以A=(14-2)÷2=6.
【提示】本题要点在于推导隔一个圆的两个圆的差,
从而得到最后的和差关系来解题。
43 某个自然数被187除余52,被188除也余52,那么这个自然数被22除的余数是_______.
【答案】8
【解】这个自然数减去52后,就能被187和188整除,为了说明方便,这个自然数减去52后所得的数用M表示,因187=17×11,故M能被11整除;因M能被188整除,故,M也能被2整除,所以,M也能被11×2=22整除,原来的自然数是M+52,因为M能被22整除,当考虑M+52被22除后的余数时,只需要考虑52被22除后的余数. 52=22×2+8这个自然数被22除余8.
56 有一堆球,如果是10的倍数个,就平均分成10堆,并且拿走9堆;如果不是10的倍数个,就添加几个球(不超过9个),使这堆球成为10的倍数个,然后将这些球平均分成10堆,并且拿走9堆。这个过程称为一次操作。如果最初这堆球的个数为
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2…9 8 9 9.
连续进行操作,直至剩下1个球为止,那么共进行了 次操作;共添加了 个球.
【答案】189次; 802个。
【解】这个数共有189位,每操作一次减少一位。操作188次后,剩下2,再操作一次,剩下1。共操作189次。这个189位数的各个数位上的数字之和是
(1+2+3+…+9)20=900。
由操作的过程知道,添加的球数相当于将原来球数的每位数字都补成9,再添1个球。所以共添球
1899-900+1=802(个)。
60 有一种最简真分数,它们的分子与分母的乘积都是693,如果把所有这样的分数从大到小排列,那么第二个分数是______.
【答案】
【解】把693分解质因数:693=3×3×7×11.为了保证分子、分母不能约分(否则,约分后分子与分母之积就不是693),相同质因数要么都在分子,要么都在分母,并且分子应小于分母.分子从大到小排列是11,9,7,1,
68 在1,2,…,1997这1997个数中,选出一些数,使得这些数中的每两个数的和都能被22整除,那么,这样的数最多能选出______个.
【答案】91
【解】有两种选法:(1)选出所有22的整数倍的数,即:22,22×2,22×3,…,22×90=1980,共90个数;(2)选出所有11的奇数倍的数,即:11,11+22×1,11+22×2…,11+22×90=1991,共91个数,所以,这样的数最多能选出91个.
二、解答题:
1.小红到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是2元钱3个,白球原价是2元钱5个.新年优惠,两种球的售价都是4元钱8个,结果小红少花了5元钱,那么,她一共买了多少个球?
【答案】150个
【解】
用矩形图来分析,如图。
容易得,
解得:
所以 2x=150
2.22名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有一名男老师,那么在这22人中,共有爸爸多少人?
【答案】5人
【解】家长和老师共22人,家长比老师多,家长就不少于12人,老师不多于10人,妈妈和爸爸不少于12人,妈妈比爸爸多,妈妈不少于7人.女老师比妈妈多2人,女老师不少于7+2=9(人).女老师不少于9人,老师不多于10人,就得出男老师至多1人,但题中指出,至少有1名男老师,因此,男老师是1人,女老师就不多于9人,前面已有结论,女老师不少于9人,因此,女老师有9人,而妈妈有7人,那么爸爸人数是:22-9-1-7=5(人) 在这22人中,爸爸有5人.
【提示】妙,本题多次运用最值问题思考方法,且巧借半差关系,得出不等式的范围。
正反结合讨论的方法也有体现。
3.甲、乙、丙三人现在岁数的和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多大岁数?
【答案】32岁
【解】如图。
设过x年,甲17岁,得:
解得 x=10,
某个时候,甲17-10=7岁,乙7×2=14岁,丙38岁,年龄和为59岁,
所以到现在每人还要加上(113-59)÷3=18(岁)
所以乙现在14+18=32(岁)。
11. 甲、乙两班的学生人数相等,各有一些学生参加数学选修课,甲班参加数学选修课的人数恰好是乙班没有参加的人数的1/3,乙班参加数学选修课的人数恰好是甲班没有参加的人数的1/4。那么甲班没有参加的人数是乙班没有参加的人数的几分之几?
【答案】
【解】:设甲班没参加的是4x人,乙班没参加的是3y人
那么甲班参加的人数是y人,乙班参加的人数是x人
根据条件两班人数相等,所以4x+y=3y+x
3x=2y x:y=2:3
因此4x:3y=8:9 故那么甲班没有参加的人数是乙班没有参加的人数的
【另解】列一元一次方程:可假设两班人数都为“1”,设甲班参加的为x,则甲班未参加的为(1-x);则乙班未参加的为3x,则乙班参加的为(1-3x),可列方程:(1-x)/4=1-3x 求x=3/11。
【提示】方程演算、设而不求、量化思想都有了,这道题不错。
2007年重点中学入学试卷分析系列七
24. 著名的数学家斯蒂芬 巴纳赫于1945年8月31日去世,他在世时的某年的年龄恰好是该年份的算术平方根(该年的年份是他该年年龄的平方数).则他出生的年份是 _____ ,他去世时的年龄是 ______ .
【答案】1892年;53岁。
【解】 首先找出在小于1945,大于1845的完全平方数,有1936=442,1849=432,显然只有1936符合实际,所以斯蒂芬 巴纳赫在1936年为44岁.
那么他出生的年份为1936-44=1892年.
他去世的年龄为1945-1892=53岁.
【提示】要点是:确定范围,另外要注意的“潜台词”:年份与相应年龄对应,则有年份-年龄=出生年份。
36. 某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有 ___ 人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同.
【答案】46
【解】 十项比赛,每位同学可以任报两项,那么有 =45种不同的报名方法.
那么,由抽屉原理知为 45+1=46人报名时满足题意.
37.
43. 如图,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线,图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π=3.14)
【答案】565.2立方厘米
【解】设三角形BOC以CD为轴旋转一周所得到的立体的体积是S,S等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。即:
S= ×62×10×π-2× ×32×5×π=90π,
2S=180π=565.2(立方厘米)
【提示】S也可以看做一个高为5厘米,上、下底面半径是3、6厘米的圆台的体积减去一个高为5厘米,底面半径是3厘米的圆锥的体积。
4.如图,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度的积为10500,则线段AB的长度是 。
【答案】5
【解】由A,B,C,D四个点所构成的线段有:AB,AC,AD,BC,BD和CD,由于点B是线段AD的中点,可以设线段AB和BD的长是x,AD=2x,因此在乘积中一定有x3。
对10500做质因数分解:
10500=22×3×53×7,
所以,x=5,AB×BD×AD=53×2,AC×BC×CD=2×3×7,
所以,AC=7,BC=2,CD=3,AD=10.
5.甲乙两地相距60公里,自行车和摩托车同时从甲地驶向乙地.摩托车比自行车早到4小时,已知摩托车的速度是自行车的3倍,则摩托车的速度是 ______ .
【答案】30公里/小时
【解】 记摩托车到达乙地所需时间为“1”,则自行车所需时间为“3”,有4小时对应“3”-“1”=“2”,所以摩托车到乙地所需时间为4÷2=2小时.摩托车的速度为60÷2=30公里/小时.
【提示】这是最本质的行程中比例关系的应用,注意份数对应思想。
6. 一辆汽车把货物从城市运往山区,往返共用了20小时,去时所用时间是回来的1.5倍,去时每小时比回来时慢12公里.这辆汽车往返共行驶了 _____ 公里.
【答案】576
【解】 记去时时间为“1.5”,那么回来的时间为“1”.
所以回来时间为20÷(1.5+1)=8小时,则去时时间为1.5×8=12小时.
根据反比关系,往返时间比为1.5∶1=3∶2,则往返速度为2:3,
按比例分配,知道去的速度为12÷(3-2)×2=24(千米)
所以往返路程为24×12×2=576(千米)。
7. 有70个数排成一排,除两头两个数外,每个数的3倍恰好等于它两边两个数之和.已知前两个数是0和1,则最后一个数除以6的余数是 ______ .
【答案】4
【解】 显然我们只关系除以6的余数,有0,1,3,2,3,1,0,5,3,,3,5,0,1,3,……
有从第1数开始,每12个数对于6的余数一循环,
因为70÷12=5……10,
所以第70个数除以6的余数为循环中的第10个数,即4.
【提示】找规律,原始数据的生成也是关键,细节决定成败。
8. 老师在黑板上写了一个自然数。第一个同学说:“这个数是2的倍数。”第二个同学说:“这个数是3的倍数。”第三个同学说:“这个数是4的倍数。”……第十四个同学说:“这个数是15的倍数。”最后,老师说:“在所有14个陈述中,只有两个连续的陈述是错误的。”老师写出的最小的自然数是 。
【答案】60060
【解】2,3,4,5,6,7的2倍是4,6,8,10,12,14,如果这个数不是2,3,4,5,6,7的倍数,那么这个数也不是4,6,8,10,12,14的倍数,错误的陈述不是连续的,与题意不符。所以这个数是2,3,4,5,6,7的倍数。由此推知,这个数也是(2×5=)10,(3×4=)12,(2×7)14,(3×5=)15的倍数。在剩下的8,9,11,13中,只有8和9是连续的,所以这个数不是8和9的倍数。2,3,4,5,6,7,10,11,12,,13,14,15的最小公倍数是22×3×5×7×11×13=60060。
16. 小王和小李平时酷爱打牌,而且推理能力都很强。一天,他们和华教授围着桌子打牌,华教授给他们出了道推理题。华教授从桌子上抽取了如下18张扑克牌:
红桃A,Q,4 黑桃J,8,4,2,7,3,5
草花K,Q,9,4,6,lO 方块A,9
华教授从这18张牌中挑出一张牌来,并把这张牌的点数告诉小王,把这张牌的花色告诉小李。然后,华教授问小王和小李,“你们能从已知的点数或花色中推断出这张牌是什么牌吗?
小王:“我不知道这张牌。”
小李:“我知道你不知道这张牌。”
小王:“现在我知道这张牌了。”
小李:“我也知道了。”
请问:这张牌是什么牌?
【答案】方块9。
【解】小王知道这张牌的点数,小王说:“我不知道这张牌”,说明这张牌的点数只能是A,Q,4,9中的一个,因为其它的点数都只有一张牌。
如果这张牌的点数不是A,Q,4,9,那么小王就知道这张牌了,因为A,Q,4,9以外的点数全部在黑桃与草花中,如果这张牌是黑桃或草花,小王就有可能知道这张牌,所以小李说:“我知道你不知道这张牌”,说明这张牌的花色是红桃或方块。
现在的问题集中在红桃和方块的5张牌上。
因为小王知道这张牌的点数,小王说:“现在我知道这张牌了”,说明这张牌的点数不是A,否则小王还是判断不出是红桃A还是方块A。
因为小李知道这张牌的花色,小李说:“我也知道了”,说明这张牌是方块9。否则,花色是红桃的话,小李判断不出是红桃Q还是红桃4。
【提示】在逻辑推理中,要注意一个命题真时指向一个结论,而其逆命题也是明确的结论。
10.从1到100的自然数中,每次取出2个数,要使它们的和大于100,则共有 _____ 种取法.
【答案】2500
【解】 设选有a、b两个数,且a<b,
当a为1时,b只能为100,1种取法;
当a为2时,b可以为99、100,2种取法;
当a为3时,b可以为98、99、100,3种取法;
当a为4时,b可以为97、98、99、100,4种取法;
当a为5时,b可以为96、97、98、99、100,5种取法;
…… …… ……
当a为50时,b可以为51、52、53、…、99、100,50种取法;
当a为51时,b可以为52、53、…、99、100,49种取法;
当a为52时,b可以为53、…、99、100,48种取法;
…… …… ……
当a为99时,b可以为100,1种取法.
所以共有1+2+3+4+5+…+49+50+49+48+…+2+1=502=2500种取法.
【拓展】从1-100中,取两个不同的数,使其和是9的倍数,有多少种不同的取法?
【解】从除以9的余数考虑,可知两个不同的数除以9的余数之和为9。通过计算,易知除以9余1的有12种,余数为2-8的为11种,余数为0的有11种,但其中有11个不满足题意:如9+9、18+18……,要减掉11。而余数为1的是12种,多了11种。这样,可以看成,1-100种,每个数都对应11种情况。
11×100÷2=550种。除以2是因为1+8和8+1是相同的情况。
14. 已知三位数的各位数字之积等于10,则这样的三位数的个数是 _____ 个.
【答案】6
【解】 因为10=2×5,所以这些三位数只能由1、2、5组成,于是共有 =6个.
12. 下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那么A2与A5的和是多少?
【答案】25
【解】 有A1+A2+A8=50,
A9+A2+A3=50,
A4+A3+A5=50,
A10+A5+A6=50,
A7+A8+A6=50,
于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,
即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.
有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.
那么有A2+A5=250-74-76-50-25=25.
【提示】上面的推导完全正确,但我们缺乏方向感和总体把握性。
其实,我们看到这样的数阵,第一感觉是看到这里5个50并不表示10个数之和,而是这10个数再加上内圈5个数的和。这一点是最明显的感觉,也是重要的等量关系。
再“看问题定方向”,要求第2个数和第5个数的和,
说明跟内圈另外三个数有关系,而其中第6个数和第8个数的和是50-25=25,
再看第3个数,在加两条直线第1、2、3、4个数和第9、3、5、10个数时,重复算到第3个数,
好戏开演:
74+76+50+25+第2个数+第5个数=50×5
所以 第2个数+第5个数=25
13.下面有三组数
(1) ,1.5, (2)0.7,1.55 (3) , ,1.6,
从每组数中取出一个数,把取出的三个数相乘,那么所有不同取法的三个数乘积的和是多少?
【答案】720
【铺垫】在一个6×5的方格中,最上面一行依次填写0、1、3、5、7、9;在最左一列依次填写0、2、4、6、8,其余每个格子中的数字等于与他同一行中最左边的数字与同一列中最上面的数字之和。问:依次填满数字以后,这30个数字之和是多少?
【解】思路同原题。(2+4+6+8)×6+(1+3+5+7+9)×5=245
因为原题较复杂,也可先讲此题,然后再讲原题。
【解】 =16×2.25×20=720.
【提示】推导这部分内容,可别忘了帮学生复习一下求一个数所有约数和的公式。融会贯通的机会来了。
家 庭 作 业
1.
【答案】
【解】将分子、分母分解因数:9633=3×3211,35321=11×3211
【提示】用辗转相除法更妙了。
14. 甲、乙二人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A还有14千米,那么,A、B两地间的距离是多少千米?
【答案】45千米
【解】设A、B两地间的距离是5段,根据两人速度比是3∶2,当他们第一次相遇时,甲走3段,乙走了2段,此后,甲还要走2段,乙还要走3段.当甲、乙分别提高速度后,再者之比是:
【提示】题目很老套了。但考虑方法的灵活性,可以作不同方法的练习。
本题还可以用通比(或者称作连比)来解。
14÷(27-13)×(27+18)=45(千米)
20. 新年联欢会上,六年级一班的21名同学参加猜谜活动,他们一共猜对了44条谜语.那么21名同学中,至少有_______人猜对的谜语一样多.
【答案】5
【解】 我们应该使得猜对的谜语的条数尽可能的均匀分布,有:
0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4=(0+1+2+3+4)×4=40,现在还有1个人还有4条谜语,0+0+0+0+1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4+4=44.
所以此时有5个人猜对的谜语一样多,均为4条.
不难验证至少有5人猜对的谜语一样多.
此题难点在入手点,即思考方法,可由学生发言,由其发言引出问题,让学生们把他们的意见充分表达出来,再在老师的启发下,纠正问题,解决问题。这样讲法要比老师直接切入解题要好。
【提示】注意如果没有人数限制,则这里的“至少”应该是1个人。结合21人,应该找到方向了。
26. 某一个工程甲单独做50天可以完成,乙单独做75天可以完成,现在两人合作,但途中乙因事离开了几天,从开工后40天把这个工程做完,则乙中途离开了 ____ 天.
【答案】25
【解】 乙中途离开,但是甲从始至终工作了40天,完成的工程量为整个工程的40× = .
那么剩下的1- = 由乙完成,乙需 ÷ =15天完成,所以乙离开了40-15=25天.
❹ 六年级数学题及答案
1.甲、乙两队学生从相距18km的两地同时出发,相向而行。一个同学骑车以14km/时的速度,在两队之间联络。甲队5km/时,乙队4km/时。两队相遇时,骑车的同学共行多少千米?
1、18/(5+4)=2小时
2.将5个数从小到大排列,平均数是38,前3个数的平均数是27,后3个数的平均数是48,中间一个数是多少?
2)5个数共190
前两个数之和190-48*3=46
第三个数为X,则:(46+X)/3=27
X=35
3.除法求出469和1072的最大公因数
3、1072/469=2余134
469/134=3余67
134/67=2余0
即469和1072的最大公因数是67
4.()()x()()=1995?()里数字不同。
4、1995=3*5*7*19=21*95=35*57
又()里数字不同
所以填(2)(1)x(9)(5)=1995
或(9)(5)x(2)(1)=1995
三个小朋友家里都种着树,小月说我家比小华家少种了20棵,小亮说我家比小月家多种1/4,小华说我家比小月家多种1/5,
问5、小华家种了多少棵树
5.120棵
6、小亮家种了多少棵树
6.125棵
7 .打四分钟电话最多可以通知多少个学生?
四分钟最多通知:一分钟1个,两分钟3个,三分钟7个,四分钟15个
8要通知60个学生,最少要几分钟?
六分钟
9数学题90,100,600,3四个数的答案是2400(用加减乘除或括号计算)90÷3×100-600 =2400
10.还有一题,,姐姐做英语题,比妹妹做数学题多用48分钟,比妹妹做英语题多用42分钟,妹妹做数学、英语两门共用了44分钟,那么妹妹做英语练习用了多少分钟?
设妹做数学用x英语用y 1,{x+y=44 {x=25
{x+42=y+48 解{y=19 答:用了19分钟
给分!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
❺ 六年级数学趣味智力题(附上答案)
1、设p、q是两个数,规定:p△q=3×p-(p+q)÷2,求7△(2△4)。16
2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……,那么4*3=4+44+444 ;105*2=105+1155 。
3、x,y是自然数,规定x*y=4x-3y,如果5*a=8,那么a是几?4
4、设a*b=5a-3b,已知x*(3*2)=18,求x。9
5、设a*b=4a-b,求(5*4)*(10*6)。2
6、设x,y是两个数,规定:x*y=x/y-y/x,求18*3-1/3。5 又1/2
7、规定a*3=a+(a+1)+(a+2),那么x*5=45,求x。7
8、小芳三天看完一本书,第一天看了全书的1/3,第二天看余下的3/4,第二天比第一天多看了20页,这本书共有多少页?120
9、运送一堆水泥,第一天运了这堆水泥的1/4,第二天运的是第一天的2/3,还剩84吨没有运,这堆水泥有多少吨?144
10、修路队修一条公路,第一天修了这条公路的2/5,第二天修了余下的1/3,已知这两天共修路120米,这条公路全长多少米?200
11、某工厂有三个车间,第一车间的人数占三个车间总人数的20%,第二车间的人数是第三车间的2/3。已知第一车间比第二车间少30人,三个车间一共有多少人?250
12、甲比乙多60%,乙比甲少百分之几?37。5
13、加工一批零件,甲先加工了这批零件的1/3,接着乙加工了余下的5/6。已知乙加工的个数比甲多160个,这批零件共有多少个?720
14、学校体育室有篮球、排球和足球,篮球的只数占三种球25总数的3/5,足球的只数是排球的2/3,足球比篮球少11只,这三种球一共有多少只?25
15、实验小学六年级三个班植树,一班植树的棵树占三个班总棵树的1/4,二班与三班植树棵树的比是3:4,二班比三班少植树24棵,这三个班各植多少棵? 56,72,96
(也可以找过去希望杯,华杯赛,五洋杯,两岸四地的题)
❻ 六年级数学计算题及答案
(1)2.64×1.7-2.64×0.7
=2.64×(1.7-0.7)
=2.64×1
=2.64
(2)31.5×1.07-3.15×0.7
=3.15×10.7-3.15×0.7
=3.15×(10.7-0.7)
=3.15×10
=31.5
(3)2.7×5.7-2.7+5.3×2.7
=2.7×(5.7-1+5.3)
=2.7×10
=27
(4)0.625÷0.125×0.8
=(0.625×0.8)×8÷(0.128×8)
=0.5×8÷1
=4
(5)18.6×6.1+3.9×18.6
=18.6×(6.1+3.9)
=18.6×10
=186
(6)1.3579+3.5791+5.7913+7.9135+9.1357
=(1+3+5+7+9)×1.1111
=25×1.1111
=27.7775
(7)52.5x2.9+5.45
=5.25x29+5.25+0.2
=5.25×(29+1)+0.2
=5.25×30+0.2
=157.5+0.3
=157.7
(8)0.92x15+0.08x15
=(0.92+0.08)×15
=1×15
=15
(9)0.72×1.25×2.5
=0.9×(0.8×1.25)×2.5
=0.9×1×2.5
=2.25
(10)400.6x7-2003x0.4
=200.3x14-200.3x4
=200.3×(14-4)
=200.3×10
=2003
❼ 六年级数学练习题及答案
六年级数学期末试卷
一、填空。第1题2分,其余每题1分,共22%
1、2—公顷=_____公顷____平方米 2—小时=_____小时_____分
2、120千克的—是_____千克 72公顷比_____公顷少—
3、30:( )=——=( )÷—=1—=( )%
4、在( )里填“>、<或=”
1—÷—( )1— 1—÷—( )1—÷—
1—( )1—×— 2—:—( )2—×1—
5、某班男生25人,女生20人,男生比女生多——,男生比女生多占全班人数的——。
6、一个圆的半径2厘米,这个圆的周长_____厘米,面积_____平方厘米。
7、一件工程,甲队单独做要20天完成,乙队单独做要30天完成,甲乙两队的工作效率之比是_____。
8、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
9、在推导圆面积计算公式时,将一个圆平均分成16等份,拼成一个近似的长方形;量得长方形宽3厘米,这个长方形长_____厘米,这个圆的面积_____平方厘米。
10、在边长4厘米圆内,剪一个最大的正方形,这个正方形的面积_____平方厘米。
11、一个比,如果将前项增加30%,后项必须加上3,比值才能不变。这个比的后项是_____。
二、判断。5%
1、甲数除以乙数等于甲数乘乙数的倒数。( )
2、男生比女生多25%,也就是女生比男生少25%。( )
3、周长相等的圆和正方形,面积相比,圆的面积大。( )
4、圆内最长的线段是直径。( )
5、某工人生产102个零件,经检验有100个合格,合格率为100%。( )
三、选择。4%
1、甲、乙两件商品,甲比乙贵—,下列说法正确的是( )
A、乙比甲便宜— B、甲比乙贵的相当于甲的—
C、乙比甲便宜的相当于乙的— D、乙比甲便宜的相当于甲的—
2、一根绳长—米,剪去它的—,还剩这根绳的( )
A、— B、— 米 C、— D、—
3、一种商品先涨价—,再降价10%,现价与原价相比( )
A、贵 B、便宜 C、一样 D、无法确定
4、一个半圆的周长10.28厘米,这个半圆的直径( )厘米
A、2 B、4 C、6 D、8
四、计算。34%
1、直接写得数。4%
—×3.2= —-0.6= 4.8÷1—= 0.8÷—=
8.5×—= —+0.5= 0.28÷0.21= —+5÷7=
2、用简便方法计算。8%
5—-5.3+4—-2.7 3—÷—+5—×1—
4.7×—-0.125+12.5%×6.3 79—×—
3、解方程。4%
2X-—=0.54 8X=17.6-—X
4、用递等式计算。(每题3分,计9分)
8—+5.6×1— 1.5×—+2.1÷— (4-3.5×—)÷1—
5、列综合算式(或方程)解答。(每题3分,计6分)
(1)25个—相加的和比什么数 (2)2—减去什么数的40%,
多4—? 正好等于2—的一半?
6、已知下图三角形面积25平方厘米,求圆的面积。3%
五、应用题。35%
1、一套西服原价480元,因季节调价,降价—出售,现在这套西服卖多少元?
2、修路队修一条公路,已修了240米,比剩下的少—,这条公路还剩多少米未修?
3、一项工程,甲队单独修要20天完成,乙队单独修要30天完成;乙队先修几天后,甲队再用8天就能正好修完?
4、红星小学,五、六年级共有785名学生,其中五年级学生数相当于六年级的—,红星小学六年级有多少名学生?
5、甲、乙两桶汽油同样多,从甲桶倒—到乙桶,这时乙桶有汽油30.4千克,甲桶原有汽油多少千克?
6、快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的—,照这样的速度,两车还要经过几小时才能相遇?
7、某工地想用甲乙两辆汽车一次将一堆货物运走,而甲乙两车的运载总量为9.18吨;如甲车多装—或乙车多装—就能一次全部运走,甲车的运栽量是多少吨?
小学数学六年级期末试卷
【打印】【时间:2005-5-23】【关闭】
小学数学六年级期末试卷(A卷)
一、填空。(6,10题每空2分,其余每空1分,共18分)
1、一百零五万八千写作( ),改写成以万为单位的数是( )万。
2、20.08千米=( )千米( )米
3、3时45分写成分数是( )时,写成小数是( )时。
4、 的分数单位是( ),有( )个这样的分数单位。
5、把340分解质因数应写成340=( )。
6、10以内所有质数的平均数是( )。
7、7==( )%
8、8.4:的比值是( )。
9、( )米的与6米的相等。
10、一个圆柱的高等于底面半径的4倍,这个圆柱的侧面展开图的周长是61.68厘米,这个圆柱体底面半径是( )。(π取3.14)。
二、判断题。对的画“√”,错的画“×”。(4分)
1、一个自然数没有比它本身再大的约数。( )
2、97是100以内最大的质数。( )
3、在一个乘法算式里,乘数是,积与被乘数的比是4:5。( )
4、任何一个圆柱体的体积都比圆锥体多2倍。( )
三、选择题。把表示正确答案的字母填在( )里。(4分)
1、一桶油5千克,先用去全部的,再用去千克,一共用去( )。
A、千克 B、千克 C、4千克
2、用4个体积是1立方分米的正方体木块拼成一个长方体,这个长方体的表面积可能是( )。
A、16平方分米 B、18平方分米 C、24平方分米
四、用简便方法计算(写出简算过程)(6分)
1、
2、1.25×25×0.4×8
五、脱式计算。(20分)
1、205×32-656
2、2975÷125+26×3.5
3、
4、(2-1.25×)×(
5、
六、求下面图形中空白部分的面积。(5分)
七、列式计算。(8分)
1、560的40%比它的多多少?
2、一个数的15%比12.8多,求这个数。(用方程解)
八、应用题。(35分)
1、机床厂第一季度生产机床570台,比计划多生产90台,超额完成计划的百分之几?
2、一项工程,甲队独干3天完成总工程的,照这样计算,完成全部工程的,需要多少天?
3、A、B两地相距32千米,甲、乙分别从A、B两地同时出发,相向而行,乙和甲的速度之比是 3:5,相遇时,甲行了多少千米?
4、一个梯形的面积是12平方分米,上底和高都是2.4分米,下底长多少分米?(用方程解)
5、原来做一套校服需要78元,现在每套提价12元,原来60套校服的钱现在可以做多少套?
6、张老师借来一本书,第一天看了全书的30%,第二天看的比全书的少14页,两天共看了70页,这本书一共多少页?
7、一个圆柱形玻璃缸,底面半径2分米,里面盛有1.5分米深的水,将一块不规则的铁放入这缸水中,水面上升0.5分米,这块铁的体积是多少?
小学数学六年级期末试卷 (B卷)
一、填空。(每空1分,共19分)
1、100个亿,5个千万,4个十万组成的数写作( ),用四舍五入法省略“亿”后面的尾数是( )。
2、升=( )升( )毫升
3.45时=( )时( )分
3、先把8.05扩大10倍,再把小数点向左移动两位,得( )
4、在9、10和18三个数中,( )能被( )整除,( )和( )互质。
5、18和21的最大公约数是( ),最小公倍数是( )。
6、a和b都是自然数,如果>,那么,a和b相比,( )大。
7、如果把甲数的给乙数,这时甲、乙两个数恰好相等,原来乙数与甲数的最简整数比是( )。
8、六(1)班男生人数是女生人数的125%,男生人数是全班人数的,女生人数比是男生人数少( )%。
9、把一个棱长4分米的正方体木块削成一个最大的圆柱体,圆柱体的体积是( )。
10、把一块长80米、宽60米的长方形菜地画在比例尺是1:2000的图纸上,图上面积是( )。
二、判断题。对的画“√”,错的画“×”。(4分)
1、能被2整除的数一定不能被3整除。( )
2、把12.5米:千米化成最简单的整数比是1:10( )
3、一个长方体的棱长和是24厘米,这个长方体的体积一定是6立方厘米。( )
4、甲数的等于乙数的,甲数比乙数多60%。
三、选择题。把正确答案的序号填在( )里。(4分)
1、已知把3米长的线段平均分成4份,可以得出( )
①每份是3米的
②每份是米
③每份是3米的
④每份是1米的
2、根据甲数除以乙数商是4,可以确定( )。
①甲数一定能被乙数整除
②乙数一定能被甲数除尽
③甲数与乙数的比是4:1
④甲数是甲乙两数的最小公倍数
四、用简便方法计算(写出简单过程)(6分)
五、脱式计算。(20分)
1、98×102-6999
2、0.4÷2.5+0.07×50
六、下图中的排水管,外直径30厘米,管壁厚3厘米,管长4米,求排水管的体积。(4分)
七、列式计算。(8分)
1、13.6减去9.4的差,除以,商是多少?
2、3.1比一个数的少1.6,这个数是多少?(用方程解)
八、应用题。(35分)
1、李明把500元存入银行,一年后取回本息537.35元,求年利率。
2、果园里的苹果树比梨树多160棵,梨树比苹果树少。果园里有苹果树多少棵?
3、一辆汽车从东城开往西城,前3小时每小时行41千米,后4小时共行220千米,这辆汽车平均每小时行多少千米?
4、建筑队用480块方砖可以铺地15平方米,照这样计算,学校的电化教室地面是120平方米,需要购买多少块方砖?(用比例方法解)
5、用铁皮焊一只底面边长都是25厘米,高40厘米的长方体无盖水桶,至少需要铁皮多少平方厘米?
(1)求三个植树队共有多少人。把数据填入表内。
(2)求三个队平均每人植树多少棵。把得数填入表内。
7、上学期红光小学六年级共有学生180人,这学期男生人数增加了16%,女生人数减少6人,这学期全年级共有学生186人,上学期六年级有男生有多少人?
❽ 人教版六年级上册数学题及答案
六年级第一学期数学期中试卷A
班级 姓名 得分
一.填空(22分)
1. 40千克= 吨 小时=( )分
2. 100的 是75 25吨是( )吨的13
3. 9的倒数是( );( )的倒数是 。
4. 千克黄豆可以榨油528 , 1千克黄豆可以榨油( )千克,榨1千克油需要( )千克黄豆。
5. 3.5= =( )÷6= =( ):( )最简比
6. 甲数是乙数的 ,乙数与甲乙总数的比是( ),两数的差相当于乙数的 。
7. 在○里填上“>”、“<”或“=”。
78 ×54 ○ 54 1× ○1÷ 14 ÷0.1○14 ×10
8. 8吨煤,用去14 后,再用去14 吨,一共用去( )吨。
9. 一个比的前项是16 ,比值是13 ,后项是( )。
10. 走一段路,甲用了15小时,乙用了10小时,甲与乙所行时间的最简比是( ),甲与乙行走的速度比的比值是( )。
11. 某班女生比男生少5人,男女生人数的比是3:2,这个班共( )人。
二.判断下面的说法是否正确(4分)
1. 两个因数都是34 ,求它们的积的列式为34 ×2。 ( )
2. a、b都是不为0的自然数,已知a× =b÷ ,则a<b。 ( )
3. 甲数的14 和乙数 13 相等,则甲乙两数的比是 4:3 ( )
4. 在3:8中,前项增加6,要使比值不变,后项应该扩大3倍。( )
三.选择正确答案的序号填在括号里(4分)
1. 因为 × =1,所以( )。
A. 是倒数 B. 是倒数 C. 和 都是倒数 D. 和 互为倒数
2. a是一个不为0的自然数,下列各式中,得数最大的是 ( )。
A.a× B. ÷a C.a÷ D. ÷
3. 从甲堆煤中取出15 给乙堆,这时两堆煤的吨数相等,原来甲、乙两堆煤的吨数的比是( )。
A.5 : 4 B.6 : 5 C.5 : 3 D.3 : 5
4. 100克糖水中有25克糖,糖与糖水的比和糖与水的比分别为( )。
A.1 : 4和1: 3 B.1 : 4和1 : 5 C.1 : 5和1 : 4 D.1 : 5和1: 3
四.计算
1.直接写出得数(4分)
21× = ÷2= × = ÷ =
512 ÷56 = 12÷ = 1÷59 = 536 ×0=
2.解方程(6分)
1112 x= 56 ÷x= 34 x÷25 =
3.脱式计算,注意使计算简便(18分)
+ × ÷2 [1-( + )]÷
( + - )×24 × + ÷4
2- ÷ - [4-( - )]×
4.列式计算(6分)
(1)56除以8个 的和,商是多少? (2)一个数的 是120的 ,求这个数。
五.应用题(第1~5题每题6分,第6题2分,共32分)
1. 小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?
2. 电视机厂今年计划比去年增产 。去年生产电视机 万台,今年计划增产多少万台?
3. 某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的 ?
4. 某校少先队员采集树种,四年级采集了 千克,五年级比四年级多采集 千克,六年级采集的是五年级的 。六年级采集树种多少千克?
5. 仓库运来大米240吨,运来的大豆是大米吨数的 ,大豆的吨数又是面粉的 。运来面粉多少吨?
6. 把一批货物按5 : 3分给甲、乙两队运,甲队完成本队任务的 ,剩下的给乙队运,乙队共运了48 吨。这批货物一共有多少吨?
票数: 1
❾ 急需六年级上册数学应用题100道题 要带答案
1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?
设丽丽有x元钱 家家有y元钱 得出:
3/5x=2/3y
2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)
解2元一次方程得x=50 y=45 即丽丽50元 家家45元 书30元一本
2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?
8除4/5=10(km/)
4/5除8=0.1(kg)
3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?
30÷1/2=60千米 1÷60=1/60小时
4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?
原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23
求出x=28
5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?
62-24=38(只)
3/5红=2/3黄
9红=10黄 红:黄=10:9
38/(10+9)=2
红:2*10=20
黄:20*9=18
6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?
原有女生:36×4/9=16(人)
原有男生:36-16=20(人)
后有总人数:20÷(1-3/5)=50(人)
后有女生:50×3/5=30(人)
来女生人数:30-16=14(人)
7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?
2.16/(1+1/11)=1.98(立方米)
8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?
现在甲乙各有
560÷2=280吨
原来甲有
280÷(1-2/9)=360吨
原来乙有
560-360=200吨
9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
原价是
200÷2/11=2200元
现价是
2200-200=2000元
10。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?
全程的
1-2/5=3/5
是
20+70=90千米
甲乙两地相距
90÷3/5=150千米
11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?
第一天看的占全书的
3/8-1/5=7/40
这本书共有
28÷7/40=160页
12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?
假设这批零件共有X个
1/28X=84-63
1/28X=19
X=532
所以这批零件共有532个。
13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?
15÷(7/10-1/2)=75(千克)
14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?
(106*5)/(1-(3/5))
=530/0.4
=1325(km)
15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?
男女生人数比是:4/5:3/2=8:15
男生人数:46/(8+15)*8=16人
女生人数46-16=30人
16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?
(1-1/3)/(1/5)=10/3
还要3 1/3个小时抄完
17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?
600/(60+75)=40/9(小时)
经过40/9小时两车可以相遇。
18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?
64×3/4=48千米
19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?
第一天卖出水果总重量的3/5,则,第二天卖了2/5,
3/5-2/5=1/5,第一天比第二天多的,
30÷1/5=150千克,
算式是,
1-3/5=2/5
3/5-2/5=1/5
30÷1/5=150千克
20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?
910*4/7=(910*4)/7=520......女生
910-520=390.......男生
21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?
4/5*5/8=(4*5)/(5*8)=1/2(米)
4/5-1/2=8/10-5/10=3/10(米)
22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?
9÷3×7=21条
23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?
132÷(6+5)=12人
男同学有
12×6=72人
女同学有
12×5=60人
24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.
甲:乙=2:3=8:12
乙:丙=4:5=12:15
甲:乙:丙=8:12:15
甲:丙=8:15
25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.
1.2:1=6:5
26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?
250000×20分之9=112500台
27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.
干部占全厂职工总数的
1-3分之2-9分之2=9分之1
这个厂的工人,技术人员和干部人数的比是
3分之2:9分之2:9分之1=6:2:1
28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.
这个班的男生和女生各有多少人..
因为人数为整数,
所以班级人数能被5+6=11整除
所以班级人数为44人
男生有
44÷(5+6)×5=20人
女生有
44-20=24人
29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?
文艺书原有:300÷(7/12-5/9)=10800(本)
文艺书比原来增加了:300÷10800≈2.8%
30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?
原来里面水是90,糖是10
倒出10克,那里面还剩90,其中水81,糖9
再加满水又水为91,糖还是9
那就是9/91
31.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?
(1)一、二组共有学生175人-67人=108人
(2)一组学生有108人×5/9=60人
(3)二组学生有108人×4/9=48人
32.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?
女生的3分之2比男生的5分之4少20人
女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人
男生有
(465+30)/(1+6/5)=225(人)
女生有
465-225=240(人)
33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?
9除以(5分之2-7分之1)
=9除以35分之9
=35(页)
答:这见稿件有35页。
34.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?
设长是8份,则宽是5份,多了:3份,即是24米
那么一份是:24/3=8米
即长是:8*8=64米,宽是:8*5=40米
面积是:64*40=2560平方米
35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?
女同学为单位1
男同学为1+25%=125%
女同学的人数比男同学少(125%-1)÷125%=20%
36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?
去年养猪:(1987+245)/3=744
今年比去年多养猪:1987-744=1243
37.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?
设小伟捐了X元
所以 2:5=X:35 得:X=14元 小伟捐了14元
38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么
第3个数是8.4
解:设第3个数为x,列方程为:
3*[9.2+(x-0.8)+x]=8.4
解得 x=8.4
39.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?
设第二根长x米,则第二根长1.5x米
1.5x-x=3
0.5x=3
x=6
6×1.5=9(米)
第一根长6米
第二根长9米
40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?
4+5=9
解:设这条路全长x米:
(5/9-4/9)x=25
1/9x=25
x=225
这条路全长225米
41.某工厂6月份计划用煤54吨,前半月平均每天烧煤1.6吨,剩下的煤如果每天烧1.5吨,还可以烧多少天?
42.“三跳”活动中,参加跳绳的人数是踢毽人数的3倍,已知跳绳人数比踢键子人数多18人,跳绳和踢毽子的同学各有多少人?
43.商店有一批运动衣,第一天卖出35件,第二天卖出28件,第二天比第一天少收入168元,每件运动衣售价多少元?
44.缝纫组里有布27.8米,计划先做8套成人衣服,每套用布2.6米,剩下的布再做成儿童服装,按每套用布1.4米计算,能做成儿童服装多少套?
45.小明看一本450页的书,前3天每天看30页,余下的每天看40 页,看完这本书还需多少天?
46.一辆汽车从甲地开往乙地,前2小时共行120千米,后3小时共行210千米,平均每小时行多少千米?
47.一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
48.同学们为灾区捐献衣服,第一次捐了890件,第二次捐了950件,两次一共捐了多少件?
49.学校举行跳绳比赛,四年级组跳了800个,五年级组跳了950个,五年级组比四年级组多跳了多少个?
50.学校举行跳绳比赛,四年级组跳了800个,五年级组比四年级组多跳了150,五年级组跳了多少个?
51.飞机每小时飞行360千米,7小时一共飞行多少千米?
52.幼儿园买来苹果36千克,梨12千克,苹果的重量是梨的重量的几倍?
53
.幼儿园买来梨12千克,苹果的重量是梨的3倍,苹果有多少千克?
54.幼儿园买来苹果36千克,苹果的重量是梨的3倍,梨有多少千克?
55. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
56. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
57. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
58. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
59. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
60. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
61. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
62. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
63. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
64. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
65. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
66. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的0%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
67. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
68. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
69. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
70. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
71. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
72. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
73. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
74. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
75. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
76. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
77. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
78. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
79. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
80. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
81. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
82. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
83. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
84. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
85. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
86. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
87. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
88. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
89. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
90. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
91. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
92. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
93. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
94. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
95. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
96. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
97. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
98. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
99. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
100. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
❿ 六年级数学难题(练习题,附答案)
1、岁末商场打折出售服装,一种美尔雅西服按八折出售,能获得利润20%。由于成本降低,现按原定价的七五折出售,却能获得利润25%。那么现在的成本比原来降低了多少?
2、甲乙两人各加工一批零件,乙完成任务比甲完成任务少用2小时。如果甲先做150个,乙再开始生产,当乙完成任务时甲能超额90个。乙的工作效率是甲的五分之四,乙每小时做多少个?
3、有甲乙两堆小球,甲堆小球比乙堆多,而且甲堆球的个数在130-200之间。从甲堆拿出与乙堆同样多的球放入乙堆中,然后从乙堆拿出与甲堆的剩下同样多放到甲堆……挪动5次以后,甲乙两堆球一样多,那么甲堆原有小球多少个?
4、在一个长24分米,宽9分米,高8分米的水草中,注入4分米深的睡,然后放进一个棱长6分米的正方体铁块,则水面上升多少分米?
5、将直角三角形ABC中的角C折起,使得C点与A点重合,如果AB=3,BC=4,那么四边形的ABED的面积是多少(见下图 如果不清晰请保存到桌面 在看图)
6一件工程,甲队单独做要15天完成,乙队单独做要20天完成。两队合作要多少天完成?
7
一件工作,甲单独做6小时完成,乙单独做要4小时完成,丙单独做要3小时完成。三人合作要几小时完成?
8一项工程,甲独做9天完成。甲独做四天后,乙与甲合作。还要多少天才能完成?
9一项工程,甲乙合作10天完成。甲、乙合做8天后,乙又独做了5天才完成,若乙单独做这项工程,要多少天?
10六1班原有1/5的同学参加大扫除,后来又有2个同学主动参加,实际参加人数是未参加人数的1/3.原来有多少个同学参加大扫除?
11在一次知识竞赛中,竞赛试题共有25道,每道题都有4个答案,其中只有1个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对了多少道题?
12当 2x-y/5xy=2时,代数式2x-y/10xy的值是多少?代数式15xy/6x-3y的值是多少?
13当x+y=15,xy=-5/51时,求代数式6x+5xy+6y的值
14某商场的电视机原价为2500元,现以8折销售,如果想使降价前后的销售额都为10万元,那么销售量应增加多少合?
15一位经销商购进某产品的进价为1050元,按进价的150%标价,若他打算获得商品的利润率不低于20%,那么他最低可以打几折,请你帮他设计一下.
16玩“20点”游戏:从一副扑克牌(去掉大、小王)中任取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为21或-21,其中红色扑克牌代表负数,黑色扑克牌代表正数,J 、Q、K分别代表11.12.13,和你的同伴做这个游戏,并写出3组式子来
17一个数的三分之一比它的五分之二少8,这个数的四分之三是多少?
18每用户的用水量不超过10吨,每吨水费0.8元,如果超过10吨,超出部分每用吨水,水费在每吨0.8元的基础上加价50%,小红上个月用水18吨,水费多少元?
19商店出售大,中,小气球,大气球每个3元,中气球每个1.5元,小气球每个1元。张老师用120元共买了55个气球,其中买中气球的钱与买小气球的钱恰好一样多。问每种球各买了几个?
20某商场购进童装500套,每套进价50元,加价60%,作为售价出售.
1.若能全部售完,则可盈利多少元?
2.当童装售出80%后,由于季节变化,商店决定五折出售,又售出了15%,最后的5%是以四折出售,这样,商店在这笔生意中共盈利了多少元?
21扇形的面积公式s=nπrr/360
设圆的半径为r,这扇形的半径为2r
得到nπ2r2r/360=πrr/2
得到n=45°
22某班学生有48人,喜欢足球的有12人,喜欢篮球的有22人喜欢乒乓的有8人,其他的有6人,求出他们所占的百分比各是多少。
23袋子里面两个白球两个红球 不改变球的数量 怎么摸才能摸到红球的数量是六分之一
24一辆货车从甲地开往乙地,每小时行35千米,行了全程的40%后,一辆小汽车从乙地开往甲地,每小时行45千米,小汽车开出3小时后与货车相遇,甲乙两地的距离是多少千米.
25把一个棱长为8厘米的正方形切割成两个完全一样的小长方形。两个小长方形的表面积之和比原来正方体的表面积增加( )平方厘米,每个小长方体的体积是( )立方厘米。