动物数学家
优质解答
科学家发现,许多动物都具有令人惊叹的“数学天赋”.这儿就略举数
例.
蜜蜂,它的每一个蜂房都是规则的六角柱状体.蜂房的一端是平整的六
角形开口,另一端则是由三个相同菱形组成的底盘.这个底盘的所有钝角为
109°28′,而所有锐角都是70°32′——如此精确的“建筑”,没有一个
聪明的“数学头脑”能成吗?
丹顶鹤,它的“数学才能”更绝.丹顶鹤总是成群结队地在空中排成“人”
字飞行.这个“人”字的角度永远保持在110°——不信,你可以用量角器
照着相片量一量.
珊瑚虫,每年都在自己的体壁上刻画出365 条环形纹路,刚好是每天一
条!
蚂蚁,它也是个“小数学家”.每次出洞去搬运食物时,大蚂蚁与小蚂
蚁的数量之比总是1∶10.每隔10 只小蚂蚁,便有一只大蚂蚁夹在其中,绝
没有“越位”的.
2. 动物数学家是谁
1.蜜蜂的蜂房表面看上去都是很标准的六边形,蜜蜂用这些“六边形”排列起来建成的家既坚固又省料,就连很多工程师都不得不赞叹他们的劳动成果。
2.蜘蛛编织的网复杂而且漂亮,看起来像八卦一样。人们即使用圆规和直尺也很难画出像蜘蛛网那样匀称的图案来。
3.猫在睡觉时总是把身体抱成一个球,这里也有数学问题呢。因为球形使自己的身体表面积最小,可以使身体发热最也最小。
4.珊瑚虫才是真正的“数学天才”!它能够在自己的身上记下“日历”,每年可以“刻画”出365条斑纹,显然是一天“画”一条。有趣的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 添加评论
.评论读取中...请登录后再发表评论!
取消
.
3. 世界上有哪些动物数学家
蜜蜂
蜜蜂的筑巢本能复杂,筑巢地点、时间和巢的结构多样。筑巢时间一般在植物的盛花期。根据筑巢的地点和巢的质地,可分为以下几类:
①营社会性生活的种类以自身分泌的蜡作脾,如蜜蜂属、无刺蜂属、麦蜂属等。巢室为六角形。
②在土中筑巢的种类最多,巢室内部涂以蜡和唾液的混合物,以保持巢室内的湿度。
③利用植物组织筑巢的更为多样,例如切叶蜂属可把植物叶片卷成筒状成为巢室,置放于自然空洞中;黄斑蜂属利用植物茸毛在茎上作成疣状的巢;芦蜂属和叶舌蜂属在枯死的植物茎干内筑巢;熊蜂属的一些种类在树林的枯枝落叶下营巢;木蜂属在木材中钻孔为巢,等等。
④其他如石蜂属利用唾液将小砂石粘连成巢,壁蜂属在蛞蝓壳内筑巢等等。
蜂巢一般是零星分散的,但也有同一种蜜蜂多年集中于一个地点筑巢,从而形成巢群。例如,毛足蜂属的巢口。
毫不起眼的蚂蚁的计算本领也十分高超。英国科学家亨斯顿做过一个有趣的实验。他把一只死蚱蜢切成三块,第二块比第一块大一倍,第三块比第二块大一倍。在蚁群发现这三块食物40分钟后,聚集在最小一块蚱蜢处的蚂蚁有28 只,第二块有44 只,第三块有89 只,后一组差不多都较前一组多一倍。看来蚂蚁的乘、除法算得相当不错。产于我国的珍稀动物丹顶鹤总是成群结队地迁徙,而且排成“人”字形。这“人”字形的角度永远是110°左右,如果计算更精确些,“人”字夹角的一半,即每边与丹顶鹤群前进方向的夹角为54°44′08″,而世界上最坚硬的金刚石晶体的角度也恰好是这个度数。这是巧合还是某种大自然的 “契合”?
珊瑚虫的“日历”
珊瑚虫则在另一个方面展示出自己过人的数学天赋,它能在自己身上奇妙地记下“日历”:每年在自己的体壁上“刻画”出365 条环形纹,显然是一天“画”一条。一些古生物学家发现,3.5 亿年前的珊瑚虫每年所“画”出的环形纹是400条。天文学家告诉我们,当时地球上的一天只有21.9 小时,也就是说当时的一年不是365 天,而是400天。可见珊瑚虫能根据天象的变化来“计算”并“记载”一年的时间,其结果还相当准确。
数可达几十个甚至达几百个。
4. 动物中的数学天才
"是阅读"是什么意思
狗通过“教育”可以学会算数,不过函数什么的应该不会,当然,是学习数学是最棒的
5. 动物中的数学家
C,相邻两角角度为45°
6. 动物中的数学家有哪些
蚂蚁,因为它每次出去找食物回来的时候,总是走最近的路。
7. 动物数学家有哪些。
蜜蜂角度
每天上午,当太阳升起与地平线成30°时,蜜蜂中的 “侦察员”就会肩负重托去侦察蜜源。回来后,用其特有的“舞蹈语言”向伙伴们报告花蜜的方位、距离和数量,于是蜂王便派工蜂去采蜜。令人啧啧称奇的是,它们的计算能力非常之强,派出去的工蜂不多不少,恰好都能吃饱,保证回巢酿蜜。此外,工蜂建造的蜂巢也十分奇妙,它是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。18 世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸,令他感到十分惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度。从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”。
3、猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
珊瑚虫的“日历”
珊瑚虫则在另一个方面展示出自己过人的数学天赋,它能在自己身上奇妙地记下“日历”:每年在自己的体壁上“刻画”出365 条环形纹,显然是一天“画”一条。一些古生物学家发现,3.5 亿年前的珊瑚虫每年所“画”出的环形纹是400条。天文学家告诉我们,当时地球上的一天只有21.9 小时,也就是说当时的一年不是365 天,而是400天。可见珊瑚虫能根据天象的变化来“计算”并“记载”一年的时间,其结果还相当准确。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
8. 大自然中的动物数学家有哪些
在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
谢谢采纳,(*^__^*) 嘻嘻……(*^__^*) 嘻嘻……O(∩_∩)O谢谢~\(≥▽≤)/~啦啦啦( ⊙o⊙ )千真万确
9. 大自然中有哪些“动物数学家”,不要抄袭,多说一点
蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。 蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。 猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。 鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。 丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜 。
10. 大自然中的动物数学家
在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
谢谢采纳,(*^__^*)
嘻嘻……(*^__^*)
嘻嘻……O(∩_∩)O谢谢~\(≥▽≤)/~啦啦啦(
⊙o⊙
)千真万确