数学小文章
❶ 数学小文章题材
写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
(1) 写什么
写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。
下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种:
①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;
如:探究大桥的热胀冷缩度
②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;
如:
一台饮水机创造的意想不到的实惠
③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法
如:
分式“家族”中的亲缘探究
如:
纸飞机里的数学
④对自己数学学习的某个章节、或某个内容的体会与反思
如:
“没有条件”的推理
如:
小议“黄金分割”
如:
奇妙的正五角星
(2) 怎样写
① 课题要小而集中,要有针对性;
② 见解要真实、独特,有感而发,富有新意;
③ 要用自己的语言表述自己要表达的内容
(四) 评价数学小论文的标准
什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。
“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。
例子:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
❷ 关于数学的小故事 一些有趣的文章 小学的
小赵、小丁、小张分别是教师、医生和律师,只知道:(1)小赵比教师年纪大;(2)小张和教师不同岁;(3)小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗?
根据(1)小赵比教师年纪大和(3)小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据(2)小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。
这道题目很简单,运用了排除法,比如:根据条件(1)和(3)就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。
一天,唐僧想考考三个徒弟的数学水平,于是他把徒弟们叫到面前,说:“徒儿们,现在我在地上写3个数,你们谁能准确读出来,我就把真经传给他。”
唐僧首先写出:23456。猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”
唐僧又写出:130567。孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”
第三个数是120034。沙和尚想了想说:“应该读作十二万零零三十四。”唐僧叹了口气,说:“如果一串数中有连续的几个零,读一个就可以了。所以这个数要读成十二万零三十四。徒儿们,你们的数学都学得不太好,还得继续努力呀,真经暂时不能传给你们呀!”
一天,八戒去花果山找悟空,可偏偏不巧,大圣不在家。小猴子们热情的招待八戒,采了山中最好吃的山桃整整100个,八戒高兴的说,“大家一起吃,大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1
八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份,从旁吃去了。
悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!”
❸ 简短数学小故事
1、0和它的数字兄弟
有一天,森林里面来了一群特殊的“客人”。它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来 一个瘦子,它说:“我是1,像支铅笔细又长”。
接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像 只耳 朵听声音。”“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割 青草。”“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又 问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。” 0耷拉着脑袋说“我最小。”“对,就是这个 表示什么都没有的0。”9用冷淡的口气说道。
9刚说完,动物们和它的数字兄弟都笑了。0更加不好意思了,动物们看到0这么没 有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。 突然一只 大象在里面挣扎了很久,用了很大的力气总想爬上 来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。
可是,怎么也爬不上来,它只好在里面大声“救命 呀!救命呀!”动物 们听到了,就纷纷跑到洞口边,想把大象救出来。数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量, 费了九牛二虎之力,也没有把大象拉上来。这个时候,只听见后 面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉 强的同意它也来帮忙。它们重新组成数字9876543210,它们的力量一下子 就增大10倍。哈哈……
一下子就把大象拉上来了。 动物们都很感谢数字兄 弟,同时也为冷落了0感到愧疚,它们都来到0的身 边,愿意和0做朋友。数字兄弟也开始重视0了,愿意 和它一起玩耍。 从此以后,0再也不自卑了,它觉得自己还是很有用的。
2、美丽的植树图案
很久很久以前,阿拉伯数字王国的国王过20岁生日,罗马数字王国派人送来了20棵珍贵的树,作为生日礼物。 阿拉伯数 啊。“20”大臣张榜招贤,凡是能巧妙地栽这20棵树的人将有重赏。可是,谁也设计不出来。 “20”大臣日夜思索,翻了大量的资料,又用石子进行了一次次的试验。
他画了成千成万个图样。画着,试着,忽然,他 眼睛一亮,看到了一张极其美妙的图案。 “20”大臣立即把图案奉献给国王。国王见了非常高兴,“20”大臣指着图案对国王说:“陛下,您看,图中所栽的树不 论横数、竖数或斜数,每行都是4棵,这样最多18行。”
国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!” 。 我要重重地赏您!” 国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!” “对,这是一位名叫山姆·劳埃德的数学家发明和设计的,我只是把他设计的图案用到植树问题上来。”
“20”大臣据实说。 “好,好,你能用上这个图案,也是有功的。”说着,国王宣布了对“20”大臣的奖赏,并将这个图案命名为“20图案”, 是世界上最美丽的植树图案。 国王立即派人按照“20图案”把20棵树栽在宫廷的花园里。从此,这美丽的植树图案就一直流传至今。
3、蝴蝶效应
气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差 一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物是 相同的。
Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据 输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结 果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小,结果出来了,不过令 他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不 出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
❹ 关于数学的小文章
函数思想,是指用函数的概念和性质去分析 问题、转化问题和解决问题。方程思想,是 从问题的数量关系入手,运用数学语言将问 题中的条件转化为数学模型(方程、不等 式、或方程与不等式的混合组),然后通过 解方程(组)或不等式(组)来使问题获 解。有时,还实现函数与方程的互相转化、 接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题 →代数问题→方程问题。宇宙世界,充斥着 等式和不等式。我们知道,哪里有等式,哪 里就有方程;哪里有公式,哪里就有方程; 求值问题是通过解方程来实现的……等等; 不等式问题也与方程是近亲,密切相关。而 函数和多元方程没有什么本质的区别,如函 数y=f(x),就可以看作关于x、y的二元方程 f(x)-y=0。可以说,函数的研究离不开方 程。列方程、解方程和研究方程的特性,都 是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数 思想通过提出问题的数学特征,建立函数关 系型的数学模型,从而进行研究。它体现 了“联系和变化”的辩证唯物主义观点。一 般地,函数思想是构造函数从而利用函数的 性质解题,经常利用的性质是:f(x)、f (x)的 单调性、奇偶性、周期性、最大值和最小 值、图像变换等,要求我们熟练掌握的是一 次函数、二次函数、幂函数、指数函数、对 数函数、三角函数的具体特性。在解题中, 善于挖掘题目中的隐含条件,构造出函数解 析式和妙用函数的性质,是应用函数思想的 关键。对所给的问题观察、分析、判断比较 深入、充分、全面时,才能产生由此及彼的 联系,构造出函数原型。另外,方程问题、 不等式问题和某些代数问题也可以转化为与 其相关的函数问题,即用函数思想解答非函 数问题。
函数知识涉及的知识点多、面广,在概念 性、应用性、理解性都有一定的要求,所以 是高考中考查的重点。我们应用函数思想的 几种常见题型是:遇到变量,构造函数关系 解题;有关的不等式、方程、最小值和最大 值之类的问题,利用函数观点加以分析;含 有多个变量的数学问题中,选定合适的主变 量,从而揭示其中的函数关系;实际应用问 题,翻译成数学语言,建立数学模型和函数 关系式,应用函数性质或不等式等知识解 答;等差、等比数列中,通项公式、前n项 和的公式,都可以看成n的函数,数列问题 也可以用函数方法解决。
等价转化
等价转化是把未知解的问题转化到在已有知 识范围内可解的问题的一种重要的思想方 法。通过不断的转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式法、 简单的问题。历年高考,等价转化思想无处 不见,我们要不断培养和训练自觉的转化意 识,将有利于强化解决数学问题中的应变能 力,提高思维能力和技能、技巧。转化有等 价转化与非等价转化。等价转化要求转化过 程中前因后果是充分必要的,才保证转化后 的结果仍为原问题的结果。非等价转化其过 程是充分或必要的,要对结论进行必要的修 正(如无理方程化有理方程要求验根),它 能给人带来思维的闪光点,找到解决问题的 突破口。我们在应用时一定要注意转化的等 价性与非等价性的不同要求,实施等价转化 时确保其等价性,保证逻辑上的正确。
著名的数学家,莫斯科大学教授C.A.雅洁卡 娅曾在一次向数学奥林匹克参赛者发表《什 么叫解题》的演讲时提出:“解题就是把要 解题转化为已经解过的题”。数学的解题过 程,就是从未知向已知、从复杂到简单的化 归转换过程。
等价转化思想方法的特点是具有灵活性和多 样性。在应用等价转化的思想方法去解决数 学问题时,没有一个统一的模式去进行。它 可以在数与数、形与形、数与形之间进行转 换;它可以在宏观上进行等价转化,如在分 析和解决实际问题的过程中,普通语言向数 学语言的翻译;它可以在符号系统内部实施 转换,即所说的恒等变形。消去法、换元 法、数形结合法、求值求范围问题等等,都 体现了等价转化思想,我们更是经常在函 数、方程、不等式之间进行等价转化。可以 说,等价转化是将恒等变形在代数式方面的 形变上升到保持命题的真假不变。由于其多 样性和灵活性,我们要合理地设计好转化的 途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循 熟悉化、简单化、直观化、标准化的原则, 即把我们遇到的问题,通过转化变成我们比 较熟悉的问题来处理;或者将较为繁琐、复 杂的问题,变成比较简单的问题,比如从超 越式到代数式、从无理式到有理式、从分式 到整式…等;或者比较难以解决、比较抽象 的问题,转化为比较直观的问题,以便准确 把握问题的求解过程,比如数形结合法;或 者从非标准型向标准型进行转化。按照这些 原则进行数学操作,转化过程省时省力,有 如顺水推舟,经常渗透等价转化思想,可以 提高解题的水平和能力。
分类讨论
在解答某些数学问题时,有时
❺ 数学小论文
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,
求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率
,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,
外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
❻ 数学小论文 500字左右
那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.
走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,3.6斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤10.5元,单价是:10.5÷1=10.5元,而一斤半十五块五,也就是1.5斤15.5元,它的单价是:15.5÷1.5,我没细算,想想可能应该比10.5多,但是却犯了个致命的错误.
算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.
回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是10.5÷1=10.5,而别人那儿是15.5÷1.5,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,15.5÷1.5=10.333……,谁便宜呀!”
通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学骗人,也不能不懂数学而被人骗!
❼ 求20篇数学小故事。
数学王子的速算法
十八世纪,德国诞生了一名伟大的科学家高斯(Gauss, Carl Friedrich, 1777-1855),他是当代最杰出的天文学家和数学家。有「数学王子」之称的高斯是近代数学的奠基者之一,可以与 阿基米德丶牛顿丶尤拉并列。
高斯年幼时已表现出超卓的数学才华。当他还在念小学时,某天老师要求学生们计算以下的算式:1 + 2 + 3 + … + 100
对於小学生来说,这是一条不简单的加法运算。然而高斯却能轻易地把正确答案5050写出。
究竟高斯用了甚麽方法,可以如此快速地计算出结果呢?原来他发现,先把1与100相加,得到101;2与99相加,也得出101;再一直加下去,共有50个101,因此这个算式的结果是101 50 = 5050。
高斯就是这样巧妙地利用运算的规律迅速地解决了问题。你明白个中的奥妙之处吗?
事实上,我们可用公式来计算首n个正整数的和,即1 + 2 + 3 + … + n。同时,这个公式亦是三角形数通项的公式。
巧量金字塔 ── 泰勒斯
泰勒斯(Thales,约公元前625 - 公元前574),生於小亚细亚西南海岸米利都,是古希腊的数学家丶天文学家和哲学家。泰勒斯是一个很精明的商人,由於他预见橄榄油果会丰收,藉着租借及出售制造橄榄油的设备,而赚了不少钱,使他有足够的金钱作科学研究及旅行之用。
泰勒斯喜欢四处旅行,相传他在埃及游历时,法老王命令祭师们量度金字塔(法老王的坟墓)的高度,祭师们为此而大伤脑筋。为了帮助祭师们解决困难,於是泰勒斯利用一个巧妙的方法量度金字塔的高度。
泰勒斯在金字塔的旁边竖立一条木柱,当木柱的影子的长度和木柱的长度相等时,只要量度金字塔的影子的长度,便可得出金字塔的高。由此可见泰勒斯的数学及科学才能。
毕达哥拉斯和三角形数
谈到毕达哥拉斯 (Pythagoras, 约公元前551-公元前479),我们最熟悉的是「毕氏定理」。然而,毕达哥拉斯最热衷的,原来并不是几何学。
毕达哥拉斯是古希腊数学家,他认为每个数字都具有独特的个性,有善有恶。他更认为 10 是一个完美的数字丶神妙莫测。这是因为 10 是首四个正整数 1丶2丶3 和 4 之和,是一个三角形数。在音乐上,若拉紧一条长度为 1 单位的弦可发出一个音调 do,把弦的长度改为这四个正整数的比:丶和,所发出的便分别是fa丶so和高一均的do等主要音调。
毕达哥拉斯创立了一个学派,名为毕达哥拉斯学派。这个学派的组织十分严密,并且带有浓厚的宗教色彩。他们认为数是万物的根源。他们研究数,不是为了实际的应用,而是为了透过对数的认识,揭露宇宙的永恒真理。可惜的是,由於学派严守保密的原则,所以很多研究成果都已失传了。
叙拉古的数学家──阿基米德
阿基米德 (Archimedes, 约公元前287 - 公元前212),生於希腊的叙拉古,父亲是位天文学家。阿基米德从小就受到良好的教育,年青时曾赴亚历山大学习数学。
皇冠的体积
有一次,叙拉古的亥厄洛国王叫金匠制造一顶纯金的皇冠,却怀疑金匠隐匿了其中一些金子。金匠矢口否认,而且证实皇冠的重量与国王所给金子重量相等。国王一时束手无策,便请阿基米德帮忙。
阿基米德日思夜想着解决的方法。他知道即使不同质料的重量相同,其体积是不一样的,所以可从皇冠的体积,来鉴定皇冠是否由纯金所制成,但却苦无求得皇冠体积的方法。
一次,阿基米德在浴盆洗澡时,看到水从盘中徐徐流出,因而悟到可以用排水法来求出皇冠的体积。若把皇冠放入盛满水的盘中,所排出的水的体积,便是皇冠的体积了。就这样,阿基米德为国王解决了这个疑难,证明金匠的确在皇冠中掺入了白银。
不要弄坏我的图
「不要弄坏我的图」──这是阿基米德最後的一句话。
公元 212 年,罗马人攻入叙拉古。相传当时阿基米德正在研究数学,一名罗马兵闯进了阿基米德的家中,并踩在几何图形上。阿基米德并没有注意对方是谁,便喊叫说:「不要弄坏我的图」,结果被那名士兵杀死了。
测量大师──海伦
海伦 (Heron of Alexandria,约1世纪) 生於埃及,是古希腊数学家丶力学家丶机械学家和测量家,曾在罗马帝国的着名学术研究城市亚历山大教授数学丶物理学等。海伦十分着重数学的实际应用,这可以从他的着作《测地术》丶《几何》丶《体积求法》中略知一二。《测地术》更被古代的人们采用了数百年之久。除此之外,他曾替欧几里得 (Euclid,约公元前330─公元前275)的《几何原本》作注释及补充。
海伦以解决几何测量问题而闻名。他给出了很多平面图形的面积公式和立体的体积计算公式,例如:正三边形至正十二边形的面积计算方法。在《测地术》中,他更给出着名的三角形的面积公式-海伦公式。
此外,海伦还把他的理论应用於机械设计,并着有《机械学》丶《投石炮》丶《枪炮设计》等着作,同时他亦是水钟丶测量仪丶起重机等的设计者。可见他是一位把数学应用於生活的天才。
公鸡5元3只母鸡5元2只,合一起卖10元5只,赔了?
前些日子,巴依“老爷”的小聪明非但没有得手,还白白损失了七个银环,心疼得要死。一贯坑害别人的他,这口气怎能咽得下去呢?这不他又神气活现的出现在了集市上,不知谁今天又要倒霉了?
“卖鸡喽,公鸡5元3只,母鸡5元2只,快来买呀!”顺着叫卖声,巴依“老爷”来到了鸡滩前,只见他贼眼珠一转,计上心来。“嘿,老头儿,你这有多少只公鸡?多少只母鸡呀?”“各有30只。”卖鸡的老大爷颤颤微微的回答。
她们的年龄是多大?
"你在忙什么呢,比尔,"教授留意地说。这时他的这位朋友正一口气喝完剩下的咖啡, 站起来要走."准备带三个女孩乘车游览!"比尔答道。
教授笑了:"原来如此!敢问三位佳丽芳龄几许?"比尔思考片刻说:"把她们年龄乘在一起得到2450,可她们年龄和恰是您年龄的两倍"。
教授摇了摇头说:"非常灵巧,但对她们的年龄仍然有疑问。"比尔还在那里,他补充道:"是的,我忘了提起,我的年龄至少要比那个岁数最大的小一岁。"而这使得一切都变得清楚了!
哥德巴赫猜想
哥德巴赫是德国数学家。
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和
最古老的数学趣题
在七间房子里,每间都养着七只猫;在这七只猫中,不论哪只,都能捕到七只老鼠;而这七只老鼠,每只都要吃掉七个麦穗;如果每个麦穗都能剥下七合①麦粒,请问:房子、猫、老鼠、麦穗、麦粒,都加在一起总共该有多少数?
答案:
总数是19607
房子有7间,猫有7X7=49只,鼠有7X7X7=343只,麦穗有7X7X7X7=2401个,麦粒有7X7X7X7X7=16807合。全部加起来是
阿基米德的墓碑
与那些英雄们的纪念碑或墓碑相比,大概只有数学家的墓志铭最为言简意赅.他们的墓碑上往往只是刻着一个图形或写着一个数,这些形和数,展现着他们一生的执著追求和闪光的业绩.
古希腊数学家阿基米德(Archimedes,公元前287----公元前212)的墓碑就是这样.在他的墓碑上刻着一个圆柱,圆柱里内切着一个球.这个球的直径恰与圆柱的高相等.
这个称为“等边圆柱”的图形,表达了阿基米德的如下发现:“球的体积和表面积都等于它的外接圆柱体积和表面积的三分之二”.它的证明并不困难,同学们不妨试一试.
蜂窝猜想
加拿大科学记者德富林在《环球邮报》上撰文称,经过1600年努力,数学家终于证明蜜蜂是世界上工作效率最高的建筑者。
四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为“蜂窝猜想”,但这一猜想一直没有人能证明。
美密执安大学数学家黑尔宣称,他已破解这一猜想。蜂窝是一座十分精密的建筑工程。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大校而另一些工蜂则负责将这些蜂蜡仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度及误差都非常小。6面隔墙宽度完全相同,墙之间的角度正好120度,形成一个完美的几何图形。人们一直疑问,蜜蜂为什么不让其巢室呈三角形、正方形或其他形状呢?隔墙为什么呈平面,而不是呈曲面呢?虽然蜂窝是一个三维体建筑,但每一个蜂巢都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。由此引出一个数学问题,即寻找面积最大、周长最小的平面图形
数学比喻
许多名人都喜欢用数学来比喻事理,往往出于幽默,诙谐,给人的印象非常深刻。
平行线
时间会刺破青春的华丽情致,会把平行线刻在美人的额头,会吃掉希世珍宝,天生丽质,什么都逃不过它横扫的镰刀 ——莎士比亚
趣味数学小故事
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了
小熊买鱼
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。你知道这是怎么一回事吗?
有趣的数学小故事
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子咕咕叫,走路直打晃。
老牛走过来,问:“狐狸,你这是怎么啦?”
狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完,老牛干活去了。
“哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐里有许多玉米,能告诉我一共有多少吗?”
“保密!”野猪没好气地答了一声。
“哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有多少玉米棒,连你有多大岁数都能知道。”
“真的?”野猪觉得不可思议。
狐狸咳嗽了两声,说:“把你筐子里的玉米棒数乘以2,加上5,把所得的数再乘上50,加上你的年龄,再减去250,把得数告诉我。”
野猪趴在地上算了半天,最后说:“得1506。”
狐狸立刻说:“你筐里有15个玉米棒,你今年6岁。”
野猪一摸前脑门想,对,筐里的玉米棒是15个。野猪一摸后脑勺想,今年自己正是6岁。
“神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
“算的呀!你算的结果是1506。最左边的两位数15,就是玉米棒数;最右边的一位数6,就是你的年龄。”
“你太伟大啦!”野猪抱着狐狸亲了一下。
“伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说:“你上了狐狸的当啦!”野猪不信。
小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米棒数15是你自己写上去的,乘以100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可以看清楚。”
“好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米棒,用每根玉米棒在狐狸头上都狠敲了一下。这下可好,瘸腿狐狸头上添了4个大包!
数学小故事
陈俊交 推荐
今天,整数王国热闹非凡,因为零国王今天生日,今天又是元旦。双喜临门,文武百官都来庆祝。
只见零国王高居宝座之上,下面排列着两行队伍。一行是以-1总理开头的队伍,-1后面跟着-2、-3、-4……它们的个子一个比一个矮。另一行是以1司令开头的,1后面跟着2、3、4、5……个子一个比一个高,一眼望不到尽头。
三声炮响,庆典开始了,突然从国王的宝座下,钻出一个圆溜溜的小东西。1司令拔出宝剑,上走几步,喝道:“来者何人?”小东西慢条斯理的说:“怎么,连我都不认识了,告诉你,我就是大名远扬的小数点。”“有何贵干?”1司令讲话总是这么刹劲。“我是来参加零国王的庆典,请你帮我安排到队伍里去吧!”零国王没等1司令反应,就说:“不行,你看宫外长长的队伍,文官从-1总理开始,武官从1司令开始,没有你容身的地方。”小数点哀求说:“你看我个子这么小,随便给我个座位吧!”“不行呀,你还是赶快离开吧。”“哼!敬酒不吃吃罚酒。”小数点脸色徒变,厉声说:“我要你们来个次序大变样!“
零国王怒气冲天,喝道“快把这个小东西抓住,来个大数。“只听,咚咚咚从宫外走来一个大高个,它就是97000000,9700万大吼一声:”小数点,哪里逃1“小数点毫不畏惧,它跳到宝座上,揪起零国王,向9700万面前推去,自己就站在零国王的面前。“轰”的一声,比山还高一截的9700万,变成了比椅子还矮的0.097了。
零国王大惊失色,就高喊:“谁能抓住小数点我就封它为王爷。”只见从宫外走来一个不倒翁的数,8说:“对付小数点不能力擒,只能智取。”“嗯”小数点在一旁嘿嘿直乐:“我倒要看看你怎么个智取法。8说:“小数点,我刚才目睹了你的本领,的确身手不凡。但是你只会吧一个数变小。不知阁下还有什么本领?”
小数点微微一笑:“来个负数,只见-47应声进来,小数点一转眼就钻到4和7的中间-47立即长高了一大截,变成了-4.7了。“根据负数绝对值越小,数值就越大。我不是把一个负数变大了”“嗯”
接着,8说:“依我看,只有一个人不怕小数点。”零国王探上身去,“此人是谁?”“就是你”“我?我为什么不怕。”“因为你不是正数也不是负数, 0.0仍然是0呀!小数点的法术对你是起不了作用的。”小数点一听零国王能降服自己,十分害怕,没等8话说完,就吱溜一声逃跑了。
失之毫厘,谬以千里
1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……”
时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。”
即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。
小数点的代价 作者:佚名 文章来源:中基网
1967年8月23日,前苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故--减速速降落伞无法打开。前苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船两个小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们沉浸在巨大的悲痛之中。
在电视台上,观众看到了宇航员科马洛夫镇定自若的形象,他面带微笑地对母亲说:"妈妈,您的图像我在这里看得清清楚楚,包括您的头上的每根白发,您能看清我吗?""能,能看清楚。儿啊,妈妈一切都很好,你放心吧!"这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马少夫说:"女儿,你不要哭。""我不哭……"女儿已泣不成声,但她强忍悲痛说:"爸爸,您是苏联英雄,我想告诉您,英雄的女儿会像英雄那样生活的!"科马洛夫叮嘱女儿说:"学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……"
时间一分一秒地过去,距离宇宙飞船坠毁只有7分钟了,科马洛夫向全国的电视观众挥挥手说:"同胞们,请允许我在这茫茫的太空中与你们告别。"
这是一次惊心动魄的告别仪式。科马洛夫永远地走了,他留下了对亲人对祖国永恒的爱。但更震撼人心的是他对女儿说的那番话。它警示着人们:对待人生不能有丝毫的马虎,否则,即使是一个细枝末节,也会让你付出深重的甚至是永远无法弥补的代价。
祖冲之给我们的启示
作者:首都师范… 文章来源:数学网整理 ~c,CngeL0
在浩瀚的夜空里有一颗小行星,在遥远的月亮背面上有一座环形山,它们都是以我国古代一位科学家的名字来命名的.他就是祖冲之(429—500),我国南北朝时代杰出的数学家、天文学家和机械制造专家.
祖冲之出生在一个世代对天文历法都有所研究的家庭,受环境熏陶他自幼就对数学和天文学有着非常浓厚的兴趣.《宋书·律历志》中,祖冲之有这样的自述:“臣少锐愚,尚专攻数术,搜练古今,博采沈奥.后将夏典,莫不摸量,周正汉朔,咸加该验……此臣以俯信偏识,不虚推古人者也……”.由此可见,祖冲之从小时起便搜集、阅读了前人的大量数学文献,并对这些资料进行了深入系统的研究,坚持对每步计算都做亲身的考核验证,不被前人的成就所束缚,纠正其错误同时加之自己的理解与创造,使得他在以下三方面对我国古代数学有着巨大的推动;
一是圆周率的计算.他算得 3.1415926<<3.1415927且取为密率。的取值范围及密率的计算都领先国外千余年.
二是球体积的计算.祖冲之与他的儿子祖恒一起找到了球体积的计算公式.这其中所用到的“祖恒原理”,“幂势既同则积不容异”,即等高处横 9?X8H1
截面积都相等的两个几何体的体积必相等.直到一千一百年后,意大利数学家卡瓦利里(B.Cavalieri)才提出与之有相仿意义的公理.
三是注解《九章算术》,并著《级术》.《缀术》在唐代做为数学教育的课本,以“学官莫能究其深奥”而著称,可惜这部珍贵的典籍早已失传.
祖冲之在数学上的这些成就,使得这个时期在数学的某些方面“中国人不仅赶上了希腊人”,甚至领先他们一千年.从祖冲之逝世至今已有一千五百周年了,祖冲之的科学成就对我们中学生又有什么样的启示呢?
数字困惑我们的生活
作者:佚名 文章来源:世界科技报道
当电脑的价格比上年下降了2000 元,而肉价涨了3 元,你全家的生活支出是减少了还是增加了?当你把钱存到银行时,银行利息能否抵得上物价上涨的因素?这些问题统计学都可以给你解答。
秦朝末年,陈胜、吴广就喊出了“ 王侯将相,宁有种乎” 的口号,有幅名联也说“ 自古英雄多磨难,纨绔子弟少伟男”,可是统计学却给了我们不一样的答案。上千年的科举考试的结果统计显示,出身农村的进士比例只占50% 强,其余都是出身仕宦贵族,而当时中国人口90% 以上都身居农村,这还包括了中小地主家庭,这样一比较的话,真正出身农民家庭的进士的比例就更少了。就连今天在号称民主的美国,你也能看见这种现象,总统老布什的儿子小布什也是总统,而肯尼迪家族事实上已经是个政治上的贵族家庭,虽然民主表面上可以做到人人都有平等竞争的机会,但统计数字告诉我们,实际上生于官宦家庭的人进入上流社会的机会更多。
这说明,统计能经常修正我们对社会现象的固有直觉。
密铺的学问
作者:佚名 文章来源:转载
地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。
❽ 一篇数学小论文
数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实是一道有些复杂的找规律题目,题目是这样的:“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里想到,这题目肯定要按照规律来做。开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 然后,我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 后来,我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是只要靠自己来寻找其中的规律,解其中的奥秘,你会发现乐趣无穷。 生活中的数学“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!
❾ 数学小论文1500字
魅力无比的定理证明
——勾股定理的证明
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。
【附录】
一、【《周髀算经》简介】
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。
二、【伽菲尔德证明勾股定理的故事】
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
转引自:http://tw.ntu.e.cn/ecation/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。
魅力无比的定理证明
——勾股定理的证明
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。