当前位置:首页 » 语数英语 » 数学作品

数学作品

发布时间: 2021-07-20 07:17:09

A. 含数学元素的作品

集合中元素的性质由三
1、无序性
2、确定性
3、互异性
只有属于集合中的元素才具有这样的性质
该性质式针对全体元素而言的
望采纳
谢谢

B. 数学作品怎么做呀

呐、写几个故事

C. 数学名著有哪些

国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。

例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。

开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。

从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。

《算经十书》

《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。

这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。

对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。

《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。

从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。

《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。

《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。

《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。

《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页)。

《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。

宋元算书

中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。

特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括:

秦九韶著的《数书九章》(公元1247年);

李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);

杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年);

朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。

《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。

宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。

宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。

宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。

中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界先进水平。

注释:

① 贝佐也译作裴蜀或比左。

D. 我想学数学 帮我推荐一些数学著作谢谢

培养兴趣:《幻方与素数》《趣味数学》 奥数方面的书等。
更深的研究:《古今数学思想》莫里斯·克莱因著

有名的数学著作,列在了下面,摘自一个博客,都已分门别类,可按自己的兴趣选择,希望对你有帮助^^
http://blog.sina.com.cn/s/blog_5ee55a950100cdev.html
重要数学著作列表
转载标签:杂谈

几何

《几何原本》(希腊文∑τοιχεῖα)是古希腊数学家欧几里德所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。

1-6卷:平面几何
7-9卷:数论
10卷:无理数
11-13卷:立体几何

出版时期: 约公元前300年

网上版本: 交互式Java版

简述: 这可能不仅是几何最重要的著作而且也是数学最重要的著作。它包含很多几何,数论的重要结果和第一个算法。原本现在依然是有价值的资源和对算法的一个好的导引。比这本书中任何特定的结果更为重要的是,似乎该书最大的成就是把逻辑和数学证明作为一种解决问题的方法推广开来。

重要性: 课题创立,突破,影响,综述,最现代且最优秀(虽然它是第一个,但是有些结果仍然是最现代的)

La Géométrie (几何学)
简述: La Géométrie 出版于1637年,笛卡尔著。该书对于直角坐标系的发展有重大影响,特别是对通过实数来表示平面上的点进行了讨论;此外还有关于通过方程来表示曲线的论述。

重要性: 课题开创者, 突破, 影响力

逻辑

概念文字(Begriffsschrift)
哥特洛布.弗雷格著
简介: 出版于1879年,标题Begriffsschrift通常译为概念写作或概念记号;概述的完整标题把它等同为"一个纯粹思想的公式语言,建模于算术语言".弗雷格发展他的形式逻辑系统的动机和莱布尼兹想要找一个计算推论器(calculus ratiocinator)是相似的.弗雷格定义了一个逻辑计算法来支持他在数学基础方面的研究.Begriffsschrift既是书名又是里面定义的计算法的名字.

重要性: 可以称的上逻辑方面自亚里士多德以来最重要的著作.

数学公式汇编(Formulario mathematico)

皮亚洛著
简介: 初版于1895年,Formulario mathematico是第一部完整的使用形式化语言书写的数学书.它包含的数理逻辑的表述和很多数学其它分支的很多重要定理.很多该书引入的概念在今天成为日常使用的概念.

重要性:影响力

数学原理(Principia Mathematica)
罗素和怀特海著
简介: 数学原理是关于数学基础的三部头著作,作者罗素和怀特海得,出版于1910年-1913年。它是使用符号逻辑中的定义严谨的公理集和推理规则来导出所有数学真理的一个尝试。是否可以从原理的公理集导出矛盾,以及是否存在不能在该系统中被证明或证否的数学命题的问题依然存在。这些问题以一种令人有些失望的方式于1931年为歌德尔不完备定理所解决。

数论

算术研究(Disquisitiones Arithmeticae,或译整数论研考)
高斯著
简介: 算术研究是德国数学家卡尔·弗雷德里希·高斯所著的数论教科书,初版于1801年,高斯24岁。在该书中,高斯把诸如费马,欧拉,拉格朗日和勒让德等数学家的数论结果收到一起并加上了他自己的重要新成果。

关于小于给定值的质数 (On the Number of Primes Less Than a Given Magnitude)
黎曼著
简介: 关于小于给定值的质数 ( Über die Anzahl der Primzahlen unter einer gegebenen Grösse)是一篇有开创性的论文,作者黎曼,发表于1859年11月版的柏林科学院每月汇报。虽然这是他唯一发表过的数论论文,它包含了影响了19世纪后期开始直到今天的几十位研究者的思想。该论文主要由定义、启发式论证、证明概略和强力的解析方法的应用;所有这些成了现代解析数论的基本概念和工具。

数论讲义(Vorlesungen über Zahlentheorie)
狄利克雷和戴德金著
简介: 数论讲义是德国数学家狄利克雷和戴德金所著的数论教科书,发表于1863年。讲义可以看作是费马、雅各比和高斯的经典数论和戴德金、黎曼和希尔伯特的现代数论之间的分水岭。狄利克雷没有显式的识别出现代代数的中心概念群,但是很多他的证明表明他有对群论的隐含的理解。

早期手稿

兰德数学纸草书(Rhind Mathematical Papyrus)
简介: 这是最老的数学文本之一,属于古埃及第二中间期。它是由抄写员Ahmes (properly Ahmose)从更老的中王国纸草所做的复件。除了描述了如何得到π的近似方法,精度达到1%,它也描述了最早对化圆为方问题的尝试之一,并在这个过程中显示了有说服力的证据,表明埃及人刻意造金字塔来用其中的比例来神化π值的理论是不对的。虽然说纸草代表了即使是对解析几何的原始尝试也是过于夸张,但Ahmes的确是用了类似余切的概念。

九章算术
简介: 中国数学书,可能成书于公元1世纪,也可能是公元前200年。它的内容包括:采用西方后来称为试位法(false position rule)的原则来进行的线性问题求解。多未知数问题求解(涉及由南宋数学家秦九韶受周易启发发明的“大衍求一术”和“孙子剩余定理”),采用和高斯消去法类似的原则。涉及到西方称为毕达哥拉斯定理(在中国又称之为“勾股定理”)的原则的问题。

阿基米德重写本
简介: 虽然作者仅有的数学工具是今天看来的中学几何,他用罕见的智慧使用的这些方法,显式的采用了无穷小来解决现在用积分学处理的问题。这些问题包括求实心半球的重心,求圆形抛物面台的重心,以及抛物线和它的一条割线所围成的区域的面积。和某些20世纪微积分教科书中对历史无知的说法相反,他没有用任何象黎曼和这样的东西,包括在这个重写本中的工作和他的其他著作中。他所用的方法的显式细节请参看阿基米德如何使用无穷小。

教科书

纯数学教程(Course of Pure Mathematics)
作者:哈代
简介: 入门级数学分析经典教科书,作者哈代。初版于1908年,有很多版本。它旨在帮助革新英国的数学教育,特别是在剑桥大学的,以及准备培养剑桥的数学系学生的学校中的。所以,它直接瞄准"奖学金等级"的学生 — 能力上排上面的10%到20%的。该书含有大量难题。内容包括入门微积分和无穷级数理论。

重要性: 入门

问题求解艺术(Art of Problem Solving)
Richard Rusczyk 和 Sandor Lehoczky
简介: 问题求解艺术从Richard Rusczyk和Sandor Lehoczky合著的两本书开始。这些书,总共约750页,是给对数学有兴趣的及/或要在数学竞赛中比赛的学生准备的。

原逻辑:标准一阶逻辑的元理论入门
Geoffrey Hunter 著
简介: 逻辑的形式化系统的数学理论的优秀介绍性书籍,涉及完备性证明,一致性证明,等等,甚至包括集合论。

算术

算术或者说艺术的基础(Arithmetick: or, The Grounde of Arts)
Robert Recorde著
简介: 著于1542年,它是第一本英语写成的流行算数书。

校长的助手,实用和理论算术的综述
Thomas Dilworth 著
简介: 早期流行英语教科书,18世纪出版于美国。该书在五节中从入门课题延伸到高等课题。

博弈论

论数字和博弈(On Numbers and Games)

John Conway
简介: 该书分为两部, {0,1|}, 两部分。第零部分关于数字,第一部分关于博弈 - 包括博弈的价值和一些真正可玩的博弈,例如Nim, Hackenbush, Col 和Snort和其他很多。

数学玩家的制胜之道(Winning Ways for your Mathematical Plays)
Elwyn Berlekamp, John Conway 和 Richard K. Guy
简介: 数学博弈的信息的综述。它初版于1982年,分为两部,一部主要集中于组合博弈和超实数,另一部主要关于一些特定的博弈。

代数几何

代数几何和解析几何(Géométrie Algébrique et Géométrie Analytique)
Jean-Pierre Serre
简介: 数学上,代数几何和解析几何是紧密相关的主题,其中解析几何是复流形的理论而更一般的解析空间用多复变量的解析函数的0点集来局部的定义。两者的关系的(数学)理论在1950年代初出现,作为给代数几何打基础的工作的一部分,例如,霍奇理论(Hodge theory)的技术。(注意虽然解析几何作为直角坐标的使用也在某种意义上属于代数几何的范围,但这不是本文的主题。)巩固这个理论的主要论文就是Serre的Géometrie Algébrique et Géométrie Analytique,现在常用GAGA表示。 GAGA风格的结果现在表示比较的定理,它使得代数几何的对象及其态射的范畴和解析几何的定义严谨的一个子范畴的对象及其全纯映射建立了一个通道。

重要性: 课题创立, 突破, 影响力

代数几何基础(Éléments de géométrie algébrique)
格罗登迪克(Alexander Grothendieck)
在Jean Dieudonne的帮助下完成, 这是格罗登迪克对他对代数几何的基础的重建工作的解说。它成了现代代数几何最重要的基础性著作。EGA中解释的工作,正像这些书著名的原因一样,改变了这个领域并导致了里程碑式的进展。

重要性: 革新了领域的开创性工作

拓扑

拓扑学
James Munkres
简介: 这本精彩的入门教科书是标准的大学点集拓扑和代数拓扑的教科书。Munkres能够在以数学的严格性教授很多主题的同时直观的给出概念的来源。

微分观点看拓扑(Topology from the Differentiable Viewpoint)
John Milnor
简介: 这本小书用米尔诺清晰而干练的风格介绍了微分拓扑的主要概念。虽然本书涉及不是很广,它用一种澄清所有细节的漂亮方式解释了它的主题。

重要性: 影响力

代数拓扑
Allen Hatcher
出版信息: 剑桥大学出版社, 2002年.

在线版本: http://www.math.cornell.e/~hatcher/AT/ATpage.html

简介: 这是旨在涵盖所有基础内容的同时保持第一次看到这个主题的初学者可读的三本教科书的系列中的第一本。这第一本书包含了基本的核心题材以及一些相对较基本的可选题材。

重要性: 入门

E. 有哪些数学著作

科普类:

1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编著,裘光明译

2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附注:据1966年英文版译

3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵

4 奇妙而有趣的几何 作 者 韦尔斯

5 几何学的故事 作者:列昂纳多·姆洛迪诺夫

6 近代欧氏几何学 作者:(美)R·A·约翰逊著、单壿译

7 《古今数学思想》, (美)莫里斯·克莱因著,张理京等译 共4册

8 《数学,确定性的丧失》 作者:(美)克莱因 著,李宏魁 译

9 数学珍宝:历史文献精选 著 作 者: 李文林

10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著

11 几何的有名定理 作者:(日)矢野健太郎著

12 什么是数学 作者:(美)R·柯,H·罗宾 著,I·斯图尔特 修订,左平,张饴慈 译

13 《证明与反驳》 作者:伊姆雷.拉卡托斯

14 数学与猜想(共两卷) G.波利亚,

15 《数学的发现》 作者:(美)乔治·波利亚 著, 刘景麟 等译

16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天

17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健

18 圆锥曲线的几何性质----通俗数学名著译丛 作者:英国)a科克肖特

19 东西数学物语 作者:(日)平山谛 著,代钦 译 丛书名: 通俗数学名著译丛

20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 著

21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎

22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 著,吴方 译

23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜

24 100个著名数学问题

25 数学中的智巧

26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等

传记类:

1 《数字情种》(爱多士传) 作者:保罗.霍夫曼

2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]

3 《女数学家传奇》 作者:徐品方

4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇

5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱

6 现代数学家传略辞典 作 者 张奠宙

7 世界著名数学家传记(上、下集) 作 者 吴文俊

8 数学精英

9 最后的炼金术士——牛顿传 作者 (英)怀特

专业:

1 《从微分观点看拓扑》J.W.米尔诺

2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉

3 《自然哲学之数学原理》 作者:艾萨克.牛顿

4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原著, 燕晓东编译

5 《数论报告》希尔伯特

6 《算术研究》高斯

7 《代数几何原理》哈里斯(Harris)

8. 《微积分学教程》菲赫金哥尔兹

9. 《有限群表示》J.P.塞尔

10. 《曲线和曲面的微分几何》杜卡谟

11. 《曲面论》达布

12. 《数论导引》华罗庚

13. 《代数学基础》贾柯伯逊

14. 《交换代数》阿蒂亚

F. 著名的数学著作有哪些

《周髀算经》是中国现存最早的数学典籍. 《九章算术》约成书于公元纪元前后,系统总结了我国从先秦到西汉中期的数学成就。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法, 并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》。 14世纪中、后叶明王朝建立后统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》 〔10卷〕是介绍西方三角学的著作。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。

G. 有哪些数学著作

数学名著, 狭义上是指在数学上具有经典意义、被人们广泛认可的优秀数学著作。广义上也包括和数学有关的其他优秀著作,比如数学家传记、数学演讲报告、数学讲义等等。
科普类
1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编著,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊著、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因著,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 著,李宏魁 译
9 数学珍宝:历史文献精选 著 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 几何的有名定理 作者:(日)矢野健太郎著
12 什么是数学 作者:(美)R·柯,H·罗宾 著,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 著, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名著译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 著,代钦 译 丛书名: 通俗数学名著译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 著
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 著,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个著名数学问题
25 数学中的智巧
26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等

传记类
1 《数字情种》(爱多士传) 作者:保罗.霍夫曼
2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界著名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特

专业类
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:艾萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原著, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚

H. 九章数学的作品全文

宋秦九韶撰。九韶始末未详。惟据原序自称其籍曰鲁郡。然序题淳祐七年,鲁郡已久入於元。九韶盖署其祖贯,未详实为何许人也。是书分为九类。一曰大衍,以奇零求总数为九类之纲。二曰天时,以步气朔晷影及五星伏见。三曰田域,以推方圆幂积。四曰测望,以推高深广远。五曰赋役,以均租税力役。六曰钱谷,以权轻重出入。七曰营建,以度土功。八曰军旅,以定行阵。九曰市易,以治交易。虽以《九章》为名,而与古《九章》门目迥别,盖古法设其术,九韶则别其用耳。宋代诸儒,尚虚谈而薄实用。数虽圣门六艺之一,亦鄙之不言,即有谈数学者,亦不过推衍河洛之奇偶,於人事无关。故乐屡争而不决,历亦每变而愈舛,岂非算术不明,惟凭臆断之故欤?数百年中,惟沈括究心是事,而自《梦溪笔谈》以外,未有成书。九韶当宋末造,独崛起而明绝学。其中如大衍类蓍卦发微,欲以新术改《周易揲蓍》之法,殊乖古义。古历会稽题数既误,且为设问以明大衍之理,初不计前後多少之历过,尤非实据。天时类缀术推星,本非方程法,而术曰方程,复於草中多设一数以合方程行列,更为牵合。所载皆平气平朔,凡晷影长短,五星迟疾,皆设数加减,不过得其大?,较今之定气定朔,用三角形推算者,亦为未密。然自秦、汉以来,成法相传,未有言其立法之意者。惟此书大衍术中所载立天元一法,能举立法之意而言之。其用虽仅一端,而以零数推总数,足以尽奇偶和较之变,至为精妙。苟得其意而用之,凡诸法所不能得者,皆随所用而无不通。後元郭守敬用之於弧矢,李冶用之於勾股方圆,欧逻巴新法易其名曰借根方,用之於九章八线,其源实开自九韶,亦可谓有功於算术者矣。至於田域、测望、赋役、钱谷、营建、军旅、市易七类、皆扩充古法,取事命题,虽条目纷纭,曲折往复,不免瑕瑜互见,而其精确者居多,今即《永乐大典》所载,於其误者正之,疏者辨之,颠倒者次第之,各加案语於下。庶得失不掩,俾算家有所稽考焉。

I. 我国古代有哪些著名的数学著作

1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。

2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。

3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。

秦九韶所创造的正负开方术和大衍求一术长期以来影响着中国数学的研究方向。焦循、李锐、张敦仁、骆腾凤、时曰醇、黄宗宪等数学家的著述都是在《数书九章》的直接或间接影响下完成的。秦九韶的成就也代表了中世纪世界数学发展的主流与最高水平,在世界数学史上占有崇高的地位。

4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。

其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内的数学知识纳入九章的框架。

5、《孙子算经》:《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。

卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。

J. 著名的数学著作有哪些

1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。自张邱建以後,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。

2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。它是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。

但其美中不足的是,在四元玉鉴中,对於一些重要的问题如求解高次联立方程组的消去法等解说过於简略,并且对於书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致於自朱世杰之後,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。

3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。

《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。

4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。

该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。

5、《孙子算经》:《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。

卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。

热点内容
高一化学月考试卷 发布:2025-09-08 10:48:27 浏览:395
教育卡通画 发布:2025-09-08 09:54:41 浏览:902
高中地理习题 发布:2025-09-08 09:45:59 浏览:109
平行四边形的认识教学反思 发布:2025-09-08 09:35:33 浏览:164
老师的错误 发布:2025-09-08 08:33:36 浏览:565
辽宁省数学竞赛 发布:2025-09-08 07:25:58 浏览:926
二年级数学下册教案人教版 发布:2025-09-08 04:19:40 浏览:216
五年级下册语文新领程答案 发布:2025-09-08 03:00:34 浏览:79
教师工作履历 发布:2025-09-08 02:15:07 浏览:196
江西教育电视 发布:2025-09-08 00:01:06 浏览:628