当前位置:首页 » 语数英语 » 数学建模初学

数学建模初学

发布时间: 2021-07-21 02:40:52

❶ !!!!!数学建模入门!!!!!

1,你要看的书:高数,线代,概率统计,图论方法,最优化方法.
2,对编程要求比较高,用matlab的话,基本都是傻瓜式操作。学好C语言,matlab用起来就得心应手了。不过,就我个人感受matlab为了方便使用而省去了很多规则,不够严谨,容易出错.
3,多长时间不好说,我大一结束时,C应该学完了,高数,线代也学了。概率统计,图论就要自己看了。两个月应该够了。

❷ 初学者如何在最短时间内学好数学建模

去数学中国这个网站看看,里面把建模需要的模型都总结了,还有就是多看些国赛论文。。主要就是拿到题有想法。国赛快开始了,加油哈~~~

❸ 数学建模从大几开始学好呢

从大一进学校就开始学比较好,刚刚经历高中的全面学习是知识面记得比较好的时期

❹ 数学建模新手怎么入门啊,我是大二学生,数学基础一般。

做题就对了。
如果你是数学系的。
有数学建模这门课程的,
书上的例子就已经很好了。
还有习题可以做啊。
数学就是做题,嘿嘿。乐在其中。

❺ 数学建模怎么入门

以下建议针对非数学系的新人,可以有计划的学习,不过别忘记,比赛是3个人的事情,所以下面涉及的知识仅靠一个人是不太可能胜任的(不排除有大牛人),这时候队友的分工协作就尤为重要了。
首先是我擅长的离散型的模型。如果你是计算机专业的,又有ACM经验的话,那么你可以大展身手了。不过对于非计算机专业的同学(比如当年的我)来说,应该是没有什么算法的经验了,所以恒心和毅力,对队友的信任,以及RP值(这点我超级自信)就非常重要了。
模型方面:姜启源的那本《数学模型》第三版,谢金星的《优化建模与LINDO/LINGO软件》就可以了,不用抱着一堆书结果什么都看不了。
算法的实现对于数学建模起着决定性的作用,一般要会以下算法。不过不用像计算机专业的那样,追求log
n或者n或者nlog
n的算法复杂度,只要能出结果就行,10min还是20min都可以。不过千万不要用LINGO求解TSP啊,要好多年才出结果。
1、
动态规划(工序调度,排课表,排比赛场次)
2、
0-1规划(投资,下料,运输)
3、
线性规划(投资,下料,运输)
4、
图的一系列问题(深度广度搜索,遍历,TSP,着色等等)
5、
网络流(多半转化成规划问题)
6、
最好能掌握神经网络,遗传,模拟退火,蚁群,禁忌搜索中的一种或多种,因为离散的赛题多半是组合优化的问题,大多数模型在现有算法能力下是没有精确解的(二维下料,排课表,TSP等等),所以启发式算法就显得尤为重要,比如遗传算法,MATLAB7.X已经有这个工具箱了,但是一定要弄清原理,知道怎么编码,怎么确定种群规模和遗传代数,怎么确定遗传概率和交叉概率。怎么避免早熟,怎么跳离局部最优。
软件方面:
1、
C/C++/JAVA/BASIC。随便会一种就可以,C的算法效率绝对比MATLAB高出很多,所以一般的算法还是用C实现吧。
2、
MATLAB。很无敌的数学软件,不多介绍了,最好能掌握神经网络工具箱和遗传算法工具箱的使用方法。算法的话,它可以实现的的C/C++也可以,用什么就看个人喜好了。
3、
LINGO。很无敌的规划模型的求解软件,对于离散模型来说,这个必须掌握。别忘记求解的时候在“全局最优”复选框前打钩,不然结果可能是局部最优。(LingoàOptionsàGlobal
Solverà
Use
Global
Solver)
然后是我不擅长的连续模型(可以说完全不懂,囧)。这个对编程能力的要求相对低一点,但是数学基本功要好,主要涉及的知识是数理统计和微分方程。
统计类问题:聚类,判别,单因素多因素方差分析,回归,拟合,还有那叫什么灰色预测的和时间序列分析的模型,听说很好用,但是我不会。
微分方程:不说什么了,这个我完全不懂,应该就是什么龙格库塔那类的,用MATLAB算参数的,其他的我也不说什么了,说得太多只能暴露我的无知。
以上就是我的一点点心得,希望可以对参加数学建模的同学有帮助,如果不仅仅是为了比赛获奖,当作一项爱好也是不错的选择。

❻ 数学建模该怎么入门

以下建议针对非数学系的新人,可以有计划的学习,不过别忘记,比赛是3个人的事情,所以下面涉及的知识仅靠一个人是不太可能胜任的(不排除有大牛人),这时候队友的分工协作就尤为重要了。

首先是我擅长的离散型的模型。如果你是计算机专业的,又有ACM经验的话,那么你可以大展身手了。不过对于非计算机专业的同学(比如当年的我)来说,应该是没有什么算法的经验了,所以恒心和毅力,对队友的信任,以及RP值(这点我超级自信)就非常重要了。

模型方面:姜启源的那本《数学模型》第三版,谢金星的《优化建模与LINDO/LINGO软件》就可以了,不用抱着一堆书结果什么都看不了。

算法的实现对于数学建模起着决定性的作用,一般要会以下算法。不过不用像计算机专业的那样,追求log n或者n或者nlog n的算法复杂度,只要能出结果就行,10min还是20min都可以。不过千万不要用LINGO求解TSP啊,要好多年才出结果。

1、 动态规划(工序调度,排课表,排比赛场次)

2、 0-1规划(投资,下料,运输)

3、 线性规划(投资,下料,运输)

4、 图的一系列问题(深度广度搜索,遍历,TSP,着色等等)

5、 网络流(多半转化成规划问题)

6、 最好能掌握神经网络,遗传,模拟退火,蚁群,禁忌搜索中的一种或多种,因为离散的赛题多半是组合优化的问题,大多数模型在现有算法能力下是没有精确解的(二维下料,排课表,TSP等等),所以启发式算法就显得尤为重要,比如遗传算法,MATLAB7.X已经有这个工具箱了,但是一定要弄清原理,知道怎么编码,怎么确定种群规模和遗传代数,怎么确定遗传概率和交叉概率。怎么避免早熟,怎么跳离局部最优。

软件方面:

1、 C/C++/JAVA/BASIC。随便会一种就可以,C的算法效率绝对比MATLAB高出很多,所以一般的算法还是用C实现吧。

2、 MATLAB。很无敌的数学软件,不多介绍了,最好能掌握神经网络工具箱和遗传算法工具箱的使用方法。算法的话,它可以实现的的C/C++也可以,用什么就看个人喜好了。

3、 LINGO。很无敌的规划模型的求解软件,对于离散模型来说,这个必须掌握。别忘记求解的时候在“全局最优”复选框前打钩,不然结果可能是局部最优。(LingoàOptionsàGlobal Solverà Use Global Solver)

然后是我不擅长的连续模型(可以说完全不懂,囧)。这个对编程能力的要求相对低一点,但是数学基本功要好,主要涉及的知识是数理统计和微分方程。

统计类问题:聚类,判别,单因素多因素方差分析,回归,拟合,还有那叫什么灰色预测的和时间序列分析的模型,听说很好用,但是我不会。

微分方程:不说什么了,这个我完全不懂,应该就是什么龙格库塔那类的,用MATLAB算参数的,其他的我也不说什么了,说得太多只能暴露我的无知。

以上就是我的一点点心得,希望可以对参加数学建模的同学有帮助,如果不仅仅是为了比赛获奖,当作一项爱好也是不错的选择。

❼ 初学者,数学建模需要准备些什么东西

数学建模应当掌握的十类算法
‍‍ 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编著,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编著,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编著,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编著,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编著,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender著,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎著,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 著,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等著,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach著,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编著,铁道出版社(1988) 3、生物医学数学模型,青义学编著,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编著, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩著,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康著,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军著,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。

1、努力学习数学知识,完善自己的知识体系,尤其是与数学相关的知识体系,比如高等数学、工程数学和应用数学的相关知识;
2、扩充自己的知识面,你可以看到很多赛题都是很现实的社会热点问题,相关的背景知识是非常必要的;
3、多看一些案例分析的教程,在学习案例分析时的注意点是:如何考虑现实问题中的各个因素,综合运用所学知识,建立适当的模型;如何进行模型的优化;如何求解模型;如何解释模型的解。
还要逐步去理解数学建模中最难的三个问题,1、如何用学到的数学思想来表述所面对的问题,所谓的建模。2、应用学到的数学知识解刚刚建立的数学模型,并进行优化。3、将刚刚得到的数学上的解解释为现实问题中的现象或者是方法。这三个过程体现了一个“现实——>数学——>现实”的一个过程。这其实就是最难的地方。这需要你首先了解面临的实际问题,然后从现实中转入数学,再从数学中跳出来回到现实。
4、说到matlab,我建议你借一本matlab手册做参考书就行了!毕竟matlab只是实现你数学模型的基础,这不是说matlab不重要,其实matlab也很重要!
祝你快乐!

❽ 怎样学习数学建模

数学建模知识应该具备的数学基础有高等数学、线性代数、概率论与数理统计,在此基础上重点看一下运筹学的书籍。当然,数学建模不仅仅是要求数学知识扎实,还需要参赛者广泛涉猎知识(包括物理、生物、心理学等),因为许多数学建模题目要求背景知识比较深,比如说12年MCM A题要求画出一棵树,这就需要参赛队员了解某类植物树叶生长具备的特点,涉及生物学知识;第二届MATHORCUP全球数学建模挑战赛A题也涉及到空气动力学知识。因此,数学建模是以数学为基础,综合各门学科(涵盖自然科学和社会科学)的一项赛事。

具备上述基础知识以后,就着重看一些建模方面的书籍,如:赵静和但琦的《数学建模与数学实验》、姜启源和谢金星的《数学模型》、《运筹学》、肖华勇的《实用数学建模与软件应用》。每一本书都有自己的特色,也没必要仔仔细细地把整本书都看完,甚至你可以只知道模型的大致步骤,真正用到的时候再翻书详细了解这个模型。因为数学建模本身就是一个学习的过程,在短短3天时间里,将陌生的知识转化成自己的知识是具有挑战的,更何况还要对模型进行改进,但是正是这样,我们才能不断接触新知识,不断培养自己的学习能力。

熟悉模型之后,基本能够看懂大部分的优秀论文了。个人认为看一些“高教杯”特等奖论文及美赛Outstanding对自己思路、知识、写作能力提升非常快,这些论文一般逻辑性很强,层次感出众。在欣赏优秀论文的过程中,还要注意模型的适用范围,举个例子来说,对于预测类的题目,比较常用的预测模型有时间序列模型、灰色预测模型、贝叶斯预测模型、神经网络预测模型等,这些模型并不是对所有的数据都是适的,有些模型需要先对数据进行剔除、平均等处理,这些细节需要特别注意,一旦不注意就会影响整篇论文的量。

上述三步进行之后,接下来就是实战演练了。参加完后主动找组委会要评语(因为那些评语里记录着你的不足,便于今后改正)。

❾ 数学建模需要学些什么

准备一些基本知识吧,比如线性规划、运筹学方面的东西、随即过程、微分方程的定性理论等等,技术方面学一学matlab、spss、stata、sas、maple、c/c++等等。 找一本关于数学建模的书看看吧,大概可以知道有些什么样的题目。 这样的书挺多的,写的大同小异。 不过建模竞赛书上所讲的东西都是些很基本的建模方法,真正建模竞赛的题目要综合运用这些方法来解决的。看这些书可以有一个初步的认识。真正什么是建模,大概只有你参加一次建模竞赛就能有体会了。

热点内容
体育教师年度个人总结 发布:2025-09-06 14:06:57 浏览:643
化学加热仪器 发布:2025-09-06 13:50:21 浏览:647
教育培训记录表 发布:2025-09-06 13:28:48 浏览:470
高考答案文科数学 发布:2025-09-06 13:19:23 浏览:443
代课老师点名 发布:2025-09-06 11:19:21 浏览:733
英语单词七上 发布:2025-09-06 10:20:57 浏览:902
受是大学老师攻是总裁 发布:2025-09-06 08:23:43 浏览:424
温州龙文教育 发布:2025-09-06 06:49:12 浏览:855
校园群芳记第二部718节 发布:2025-09-06 03:13:28 浏览:193
物理实验室安卓版 发布:2025-09-06 02:53:07 浏览:529