七年级数学典型例题
Ⅰ 初一数学典型例题
分针1小时转一圈,是360度
1小时是60分钟
所以分针1分钟转360÷60=6度
时针12小时转一圈,是360度
12小时是12×60分钟
所以分针1分钟转360÷(12×60)=0.5度
2:15
分针1分钟转6度,所以15分钟转15×6=90度
2点15分有2×60+15=135分钟,时针1分钟0.5度
所以135分钟是135×0.5=67.5度
所以夹角90-67.5=22.5度
Ⅱ 初一数学上册经典例题(困难!!!经典!!!考点!!!)
1.-3和-8在数轴上所对应两点的距离为_________.
2.将图中所示几何图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,则应剪去的正方形是_________.
3.平方为0.81的数是________,立方得-64的数是_________.
4.在学校“文明学生”表彰会上,6名获奖者每位都相互握手祝贺,则他们一共握了______次手,若是n位获奖者,则他们一共握了_____次手.
5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有______个交点,最少有________个交点.
6.太阳的半径为696000 000米,用科学记数法表示为___________米.
7.袋中装有5个红球,6个白球,10个黑球,事先选择要摸的颜色,若摸到的球的颜色与事先选择的一样,则获胜,否则就失败.为了尽可能获胜,你事先应选择的颜色是_________.
8.当x=_______时,代数式2x+8与代数式5x-4的值相等.
9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,则这种服装每件的成本价________元.
10.代数式3a+2的实际意义是_________.
二、精心选一选(每小题3分,共30分)
11.绝对值小于101所有整数的和是( )
(A)0 (B)100 (C)5050 (D)200
12.数轴上表示整数的点为整点,某数轴上的单位长度是1厘米,若在这个数轴上随意放一根长为2005厘米的木条AB,则木条AB盖住的整点的个数为( )
(A)2003或2004 (B)2004或2005
(C)2005或2006 (D)2006或2007
13.如图,某种细胞经过30分钟便由1个分裂成2个,若这种细胞由1个分裂成16个,那么这个过程要经过( )
(A)1.5小时; (B)2小时;(C)3小时;(D)4小时
14.用一个平面去截一个几何体,截面不可能是三角形的是( )
(A)五棱柱 (B)四棱柱 (C)圆锥 (D)圆柱
15.用火柴棒按下图中的方式搭图形,则搭第n个图形需火柴棒的根数为( )
(A)5n (B)4n+1 (C)4n (D)5n-1
16.在直线上顺次取A、B、C三点,使得AB=9cm,BC=4cm,如果点O是线段AC的中点,则OB的长为( )
(A)2.5cm (B)1.5cm (C)3.5cm (D)5cm
17.当分针指向12,时针这时恰好与分针成120°角,此时是( )
(A)9点钟 (B)8点钟 (C)4点钟 (D)8点钟或4点钟
18.如果你有100万张扑克牌,每张牌的厚度是一样的,都是0.5毫米,将这些牌整齐地叠放起来,大约相当于每层高5米的楼房层数( )
(A)10层 (B)20层 (C)100层 (D)1000层
19.在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是( )
(A)抽到大王的可能性与抽到红桃3的可能性是一样的
(B)抽到黑桃A的可能性比抽到大王的可能性大
(C)抽到A的可能性与抽到K的可能性一样的
(D)抽到A的可能性比抽到小王的大
20.小明去银行存入本金1000元,作为一年期的定期储蓄,到期后小明税后共取了1018元,已知利息税的税率为20%,则一年期储蓄的利率为( )
(A)2.25% (B)4.5% (C)22.5% (D)45%
三、用心想一想(每小题10分,共60分)
21.利用方格纸画图:
(1)在下边的方格纸中,过C点画CD‖AB,过C点画CE⊥AB于E;
(2)以CF为一边,画正方形CFGH,若每个小格的面积是1cm2,则正方形CFGH的面积是多少?
22.如图,这是一个由小正方体搭成的几何体的俯视图,小正方形的数字表示在该位置的小立方体的个数,请画出主视图和左视图.
23.某食品厂从生产的食品罐头中,抽出20听检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如下表:
与标准质量的
偏差(单位:克) -10 -5 0 +5 +10 +15
听数 4 2 4 7 2 1
问这批罐头的平均质量比标准质量多还是少?相差多少克?
初一上册数学典型例题初一上册数学典型例题初一上册数学典型例题初一上册数学典型例题 1、n个不等于零的有理数的积是负数,负因数有( ) (A)无数个 (B)奇数个 (C)偶数个 (D)一个 2、两个带有绝对值的数的积是( ) (A)正数 (B)负数 (C)零 (D)非负数 3、-1×−−÷−×−+−÷2)32()4.0()411()4(324 4、 5、 6、 )3123()31(221yxyxx+−+−−,其中x=-1,y=2 ; 7、已知26xy−+=,则23(2)5(2)6xyxy−−−+的值是( ). A.84 B.144 C.72 D.360 8、已知:a与b互为相反数,c与d互为倒数,x=3(a-1)-(a-2b),y=cd+c(a+b). 求3x-2y的值. 9、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,求(1)m的值;(2)代数式(m+2)2005·(2m-57)2004的值。 10、若0122zyxn−−与yzxm38−−是同类项,则=m =n ; 11、一个三位数的个位数字是a,十位数字是b,百位数字是c,则这个三位数是__________ 12、若代数式mx2 + 5y2 − 2x2 + 3的值与字母x的取值无关,则m的值是_____。 13、符号“f ”表示一种运算,它对一些数的运算结果如下: (1) f(1) = −1,f(2) = 0,f(3) = 1,f(4) = 2,…… (2) f(12) = −2,f(13) = −3,f(14) = −4, f(15) = −5,…… 利用以上规律计算:f(12009) + f(2009) = ___________。 14.有一列数a1 ,a2 ,a3,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1 =2, 则a2007为_________________. 15、先化简再求值:已知:xxA563−+=,233xxB+−=,xxC62−=. 求:当42=x 时,()CBA−−2的值. 16、C是线段MN的中点,D是NC上一点,选项中错误的是( ) A.CD=MC-ND B.CD=12MN-ND C.CD=12NC D.CD=MD-NC 17、如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是_____________.
19、灯塔A在灯塔B的南偏东60°,A、B相距4海里,轮船C在灯塔B的正东,在灯塔A的北偏东30°,选用适当的比例画图确定轮船C的位置. 20、(-2)100比(-2)99大( ) A、2 B、-2 C、299 D、3×299 21、数a、b在数轴上的位置如图所示,给出下列式子:①∣a + b∣,②a − b,③ab,④(b − a)2,其中结果为正....的式子的个数有( ) A、1个 B、2个 C、3个 D、4个 22、某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米? 23、一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米? 24、在6点和7点间,时钟的分针和时针重合?(教材复习题,分针的速度是时针的12倍) 25、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离? 26、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五? 27、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件? 28、一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。 29、有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面。每名师傅比徒弟一天多刷30m2的墙面。 (1)求每个房间需要粉刷的墙面面积; (2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成? (3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算?
望采纳~·`
Ⅲ 初一数学经典题目及答案
www.sokw.net
Ⅳ 初一上数学典型应用题,越典型的越好,谢谢大家了
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元
这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。
解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
2.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。
解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
答案:
1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150.
多给点分啊!!!
参考资料:参考资料: http://..com/question/41261571.html?si=6