高数学习
㈠ 如何学习高数
首先要理清高数总体的知识框架。高数的主体是微积分。
微积分分为微分学和积分学两部分,微分学和积分学的基础和核心思想都是极限,极限的思想是贯穿于始终的,所以首先要掌握极限的定义。
微分学的中心问题是求导问题,反映在几何上就是切线问题,求导也就是求函数变化率的极限,所以一定要掌握和理解导数的定义;积分学的中心问题是求积问题,求积是求导的逆过程,难度比微分学要大,积分分为不定积分和定积分,值得注意的是,不定积分和定积分的定义并不相同,但是定积分可以通过不定积分的算法来求解。
微积分中的难点是复合函数的求导和求积问题,也就是换元思想的应用,需要多做题来更好的理解。
然后要弄清微积分的考点,这样会更有针对性,比如等价无穷小替换,求极限,连续,间断,分断函数分断点处导数的求法,高阶导数,洛必达法则,最值问题(求一阶导数),凹凸问题(求二阶导数),用换元法和分部积分法求积分等。
课本一定要多看几遍,每一遍都肯定能有新的收获。
㈡ 大学高数应该怎么学习
上课认真听讲,课后多练习。
数学:
课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。
数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此.良好的数学学习习惯包括:听讲、阅读、探究、作业.
听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记.每堂课结束以后应深思一下进行归纳,做到一课一得.
阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维.
探究:要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律.
作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学.
总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力,最终把数学学好.
总之,是个积累的过程,你了解的越多,学习就越好,所以多记忆,选择自己的方法。
祝学习成功!
㈢ 如何学好高数
1、做好课前预习
课前预习能够对老师要讲的内容有所了解,大体把握,能够把自己不会的赛选出来,上课时重点听不会的。但是,许多学生都看不进高数书,高数又难又枯燥,勉强自己反而会对高数产生厌恶感。所以能够看进高数书的一定要自主的学习,但看不进的不要勉强自己。看不进的可以去蹭课。大学的时间比较充裕,老师们的课不会是都挤在一起的,所以在自己没课时去蹭高数课也是一种很好的预习。
2、做好复习总结
高数很多知识都是连在一起的,需要我们经常把学过的知识复习,总结,这样才能融会贯通。当然,有些学生对复习没有耐力,那么,对自己要求低一点,每天只复习前一堂课所学的。不要求数量,一定要效率高。
3、课堂认真对待,课后紧跟做题
大学都是阶梯的大教室,没有固定位置,那么就尽量坐第一排。想学好态度很重要,做第一排既是一个认真学习的态度,也能帮助我们让我们少走神。在课后再做相应习题加强知识点记忆。
(3)高数学习扩展阅读:
作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。
㈣ 高数学习
高数学习心得
有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。
同学们大部分害怕高数,高数学习起来确实是不太轻松。其实,只要有心,高数并不像想象中的那么难。学习了一年高数,我的感受也颇多。虽然有很多人比我学得更好,但在这里我也谈谈自己关于高数学习的一些拙见吧。
首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。所以,我觉得要学好高数,一定不能有畏难的情绪。当我们有信心去学好它时,就走好了第一步。
其次,课前预习很重要。每个人的学习习惯可能不同,有些人习惯预习,有些人觉得预习不适合自己。但对我而言,学习高数,预习是必要的。每次上新课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的先自己理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。另外,我一般在预习后会试着做一下课后题,只是试着做一两道简单的题目,找找感觉,虽然可能做不出,但那样会有助于理解。
然后,要把握课堂。我认为,把握好课堂对高数学习是很关键的。课堂上老师讲的每一句话都有可能是很有用的,如果错过了就可能会使自己以后做某些题时要走很多弯路,甚至是死路。老师在上课时会详细地讲解知识点,所以对于我们的理解是很有帮助的,有些知识点,我们课余看一小时,也许还不如听老师讲一分钟理解得快。并且,老师还会讲到一些要注意的但书上没有的东西,所以课堂上最好尽量集中精神听讲,不要错过了某些有价值的东西。
此外,要以教材为中心。虽然说“尽信书不如无书”,但是,就算教材不是完美的,我们还是要以教材为中心去学习高数。教材上包含了我们所要掌握的知识点,而那些知识点是便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。并且,书上很多原理的证明过程体现的数学思想对于我们的思维训练是很有益处的。我觉得,只有将教材上的基础知识融会贯通了,把基础打好了,知识才能稳固。也许,将书上的知识都真正理解透彻了,能够举一反三了,那么不用再看参考书,不用做习题去训练,都能以不变应万变了。当然,做到这一点不容易,我也没有做到。但是,把教材内容尽可能地掌握好,是绝对益处多多的。
最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。就我的体会而言,如果只是想考试考好,不想去深入研究它的话,做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题就能解决很多同类型的题了。同时,做题不能只是自己一个人冥思苦想,有时候自己的思维走进了死胡同是很难走出来的,当自己做不出来的时候,不妨问问老师或者同学,也许就能豁然开朗了。对于做完的题目,觉得很有价值的,最好是把它摘抄到笔记本上,然后记录一下解题的要点,分析一下题目所体现的思维方式等等,平时有时间就翻看一下,加深一下记忆。
以上就是我个人的一些学习心得还缺乏经验。关于高数学习,不同的人会有不同体会和见解,我的学习方法不见得会对别人都适用,但是,权当是一种学习经历的分享吧!
㈤ 高数主要学习些什么
高等数学主要内容包括:极限、微积分、空间解析几何与向量代数、版级数、常微分方程。权
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
《高等数学》是根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求编写的·内容包括: 函数与极限,一元函数微积分,向量代数与空间解析几何,多元函数微积分,级数,常微分方程等,书末附有几种常用平面曲线及其方程、积分表、场论初步等三个附录以及习题参考答案·本书对基本概念的叙述清晰准确,对基本理论的论述简明易懂,例题习题的选配典型多样,强调基本运算能力的培养及理论的实际应用·本书可用作高等学校工科类本科生和电大、职大的高等数学课程的教材,也可供教师作为教学参考书及自学高等数学课程者使用。
㈥ 高数应该如何学习
1.认真听课。既然是高数课,自然是老师讲课,一周的高数课的节数肯定不会少。老师上课就是最好的一个学习媒介。
2做好笔记。书上一些没有的证明和老师上课随性发挥的精华可是一瞬即逝的。做好笔记还有益于上课认真专注。如果是自己看书也需要记笔记。
3按时做作业。高数的作业会有很多,而它对学好高数的重要性也不言而喻的。而且,作业好还有平时分还高,最后总评也高不是。
4学习公开课。如果对一些证明,推理,或者概念不清楚,想要找个名师的话,网络上的公开课其实是一个非常好的选择。
5课前预习很重要。课前预习能够对老师要讲的内容有所了解,大体把握,能够把自己不会的赛选出来,上课时重点听不会的。但是,许多学生都看不进高数书,高数又难又枯燥,勉强自己反而会对高数产生厌恶感。所以能够看进高数书的一定要自主的学习,但看不进的不要勉强自己。看不进的可以去蹭课。大学的时间比较充裕,老师们的课不会是都挤在一起的,所以在自己没课时去蹭高数课也是一种很好的预习。这样听一遍高数课你或许听不懂,但听两遍应该能听懂了吧。
6高数很多知识都是连在一起的,需要经常把学过的知识复习,总结,这样才能融会贯通。当然,有些学生对复习没有耐力,那么,对自己要求低一点,每天只复习前一堂课所学的。不要求数量,一定要效率高。
7考试想要高数得高分一定离不开题海战术,做题,多多益善。如果没耐力也一定要将课后题和章节测试AB好好练习。
㈦ 高数你是怎样学习的
高等数学和初高中数学是不同的,学习的方法和技巧肯定也是不一样的。
㈧ 学习高等数学需要多少时间
半册高等数学自学完全取决于你的数学基础,如果中学数学基础差,自学几年也考不过,如果数学基础比较扎实,不听课,仍然比较难的,高等数学与中学数学思维模式发生很大变化。
初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
高等数学主要培养微积分思维,是一门重要的基础课程,而微积分又是这门课程的基础模块。对这一模块学习的好坏,将影响到与其相关内容的学习。
㈨ 高等数学都学什么
高等数学主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
(9)高数学习扩展阅读:
高等数学课程分为两个学期进行学习。它的教学内容包含了一元函数微积分、多元函数微积分、空间解析几何与向量代数初步、微分方程初步、场论初步等。
在学习这些高等数学的内容的时候,很多的同学表示犯难,的确,因为这些都是在高中课程的基础上完善的,想要更好的学好高等数学这门学科,在高中时候的积累显得特别的重要。
㈩ 高数的学习方法
一、了解高等数学的教学特点。
与初等数学相比,高等数学的课堂教育三个显著的差别:①课堂大,高等数学一般是若干个小班合班上课,课堂上不允许同学们提问。②时间长。大学课堂里的每一堂课一般都是100分钟,两节课连上,高等数学也不例外。③进度快。由于高等数学的内容十分丰富,但学时又有限,因此每堂课不仅教学内容多,而且是全新的,教师讲课主要是讲重点、难点、疑点,讲概念、讲思路,举例较少。
二、注意抓好学习的“五部曲”。
预习为提高听课效率,每次上课的前一天,对第二天教师要讲的内容应做预习,即先自学教材,重点阅读定义、定理和主要公式。这就可使自己听课时心里有底,不至于被动。也可以知道重点、难点和疑点所在,带着问题去听课。
听课应带着充沛的精力和预习中的疑问,报着获取新知识的浓厚兴趣,用心聆听教师是如何提出问题、分析问题和解决问题的。由于教师在课堂上将系统讲述教学内容,这就给学生提供了解决问题的最好机会。听课时,要紧紧围绕教学内容听课,听问题,听解决问题的思路和方法,听结论,听应用,听内容的来龙去脉。一堂课下来,预习中已理解的内容,可加深印象;预习中一知半解的内容,可全部理解;预习中理解不准确、有偏差的内容,可得到纠正;预习中全然不懂得内容,可全部或部分弄懂。为提高听课效率课堂上要集中精力,积极思索,根着老师的讲解往下听遇到没听懂的问题只要做个记号留待课后解决。另外要善于记笔记,因为老师在课堂上讲的内容,大部分课本上都有,所以记笔记主要应记:1课本中跃度大,预习时看不懂需要补充的步骤;2重点难点,要求较高易出错而需特别引起注意的问题;3老师补充的内容和例题;4课堂上听不懂的问题要做上记号。
复习学习包括学与习两个方面。学是为了获取知识,习是为了理解掌握知识。所以复习也是学习高数的重要环节之一。复习时应将课堂笔记和教材结合起来进行。但在此之前,应先思索本节课的主要内容,抓住要领,提取精华,加深理解,强化记忆。复习第二步应系统看书,并与老师的讲解和自己原来的理解相对照。然后找出精华和要点,着力在这些要点处下功夫,务必做到基本概念清楚、基本理论准确、基本思想方法学会、基本技能技巧熟练,为以后打下良好基础。一个单元学完以后要进行阶段复习,学期末要进行总复习,目的是将所学内容加深理解融会贯通,形成系统完整的知识结构,进而找出数学课程与其他课程的内在联系,将所学知识与思维方法应用于后继课程或实际问题中。阶段复习和总复习时进行小结和总结是必要的,小结和总结可以帮助我们更好地理解和掌握知识,体验并学到思维方法。
做作业学数学不做题是万万不行的,认真及时完成作业也是一个十分重要的学习环节。值得指出的是,由于在中学养成的习惯,有相当多的同学不复习就做习题,自认为“只要我能做出来就行了”,但学习高等数学则不同:第一,通常习题内容并不包含全部内容;第二仅做习题尚不能完全建立起有关知识的系统结构;第三,不复习就做习题往往是做到哪儿,书、笔记翻到哪儿,结果不但慢而差,而且以后一旦脱离书本和笔记时,就会感到束手无策。
答疑答疑也是大学学习的一个重要环节。同学们在学习中遇到疑问时(不管是听课、复习还是作业中的),都应及时请教老师,切勿“拖欠”。还可以向老师较系统地反映自己学习、思想、生活中的疑惑,以及对某些问题的见解,亦可以请教学习方法。法国数学家笛卡尔指出:“没有正确的方法,即使有眼睛的博学者也会像瞎子一样盲目摸索”学习必须讲究方法,但任何学习方法都不是惟一的。希望同学们能够尽快适应大学的学习生活掌握正确的学习方法,培养能力,提高综合素质。
学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。
1.“循序渐进”──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。
2.“熟读精思”──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,“熟读”,要做到“三到”:心到、眼到、口到。“精思”,要善于提出问题和解决问题,用“自我诘难法”和“众说诘难法”去质疑问难。
3.“自求自得”──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。
4.“博约结合”──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。
5.“知行统一”──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。“知者行之始,行者知之成”,以知为指导的行才能行之有效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。