当前位置:首页 » 语数英语 » 世界上最难的数学

世界上最难的数学

发布时间: 2021-07-26 08:57:29

❶ 请问世界上最简单,最难的数学题分别是什么

你好啊·这个看给什么人做了最容易的有时候是最难的

❷ 数学上的世界之最难

1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛–弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛–伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛–弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。1988年出版的《中国大网络全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题。问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题。此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。《中国大网络全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、庞德里亚金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0,1,和任意代数无理数β证明了αβ的超越性。 8.素数问题。包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律。该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10.丢番图方程的可解性。能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。 11.系数为任意代数数的二次型。H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。 12.将阿贝尔域上的克罗克定理推广到任意的代数有理域上去这一问题只有一些零星的结果,离彻底解决还相差很远。 13.不可能用只有两个变数的函数解一般的七次方程。七次方程的根依赖于3个参数a、b、c,即x=x(a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。 14.证明某类完备函数系的有限性。这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。 15.舒伯特计数演算的严格基础一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。 16.代数曲线和代数曲线面的拓扑问题这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。 17.半正定形式的平方和表示。一个实系数n元多项式对一切数组(x1,x2,…,xn)都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。 18.用全等多面体构造空间。由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。 19.正则变分问题的解是否一定解析。对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。 20.一般边值问题这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。 21.具有给定单值群的线性微分方程解的存在性证明。已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。 22.由自守函数构成的解析函数的单值化。它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。 23.变分法的进一步发展出。这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。 知识浅薄,请谅解。谢谢 。

❸ 世界上最难的数学题

这一很简单。就是用那个九点去那个前面的数就等于那个数,然后加起来就是等于七。

❹ 世界上最难的数学题到底是什么

最简单:1+1=?
最难:被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。

❺ 世界上最难的数学题有哪些

规尺作图三大难题:
1.三等分任意角.
2.倍立方体,即作一个体积是给立方体体积2倍的立方体.
3.化圆为方,即作出与给定圆面积相等的正方形。

❻ 世界上最难的23到数学题是什么

哥德巴赫猜想(Goldbach Conjecture)

公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个n ³ 6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个n ³ 9之奇数,都可以表示成三个奇质数之和。

这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:

6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,

16 = 5 + 11, 18 = 5 + 13, . . . . 等等。

有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。

在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。

1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。

1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。

1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。

1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。

1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。

1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。

1956年,中国的王元证明了 “3 + 4 ”。

1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。

1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,

中国的王元证明了 “1 + 4 ”。

1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。

1966年,中国的陈景润证明了 “1 + 2 ”。

最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。

"X&P _,S|:Yt}[0 o o o o o 桌面天下WX g ps^b/M
o o o o 桌面天下1G6g i%H&@^{
o o o o o 桌面天下4sR&~!g S;hQ%@?L
o o o o o
yLOSh0o o o o o
]%RC bo'Fz d9n0桌面天下D#lw7P+XX ?4N
将每个圈用直线连起来,不能用斜线,不能空一个, 线不能交叉。桌面天下?6A3^S#Nn+I Y ?3r

(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b H0桌面天下,t|tz Y*Vvmb
桌面天下 uZS ]@ rI
桌面天下1O&D.x&R$i+Z

8U8ge2MH+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:
6n"S!b E8K3wZ+]5M0o . o . * 桌面天下"Zh8C H`z
. o . o
*} V m]/y%y/z6TC0o . o . o
z0g*Y2@+l U0. o . o .
8gS;^&{?t&lk u0o . o . o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是: 桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线

❼ 世界上最难的数学题是什么

哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。参考资料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14

❽ 世界上最难的数学题是什么答案又是什么

据说是这个:
最难的数学题是证明题“哥德巴赫猜想”.
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.考虑把偶数表示为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b".1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和".离猜想成立即"1+1"仅一步之遥.

❾ 世界上最难的数学题!!!

哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。
"X&P
_,S|:Yt}[0
o
o
o
o
o
桌面天下WX
g
ps^b/M
o
o
o
o
桌面天下1G6g
i%H&@^{
o
o
o
o
o
桌面天下4sR&~!g
S;hQ%@?L
o
o
o
o
o
yLOSh0o
o
o
o
o
]%RC
bo'Fz
d9n0桌面天下D#lw7P+XX
?4N
将每个圈用直线连起来,不能用斜线,不能空一个,
线不能交叉。桌面天下?6A3^S#Nn+I
Y
?3r
(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b
H0桌面天下,t|tz
Y*Vvmb
桌面天下
uZS
]@
rI
桌面天下1O&D.x&R$i+Z
8U8ge2MH+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:
6n"S!b
E8K3wZ+]5M0o
.
o
.
*
桌面天下"Zh8C
H`z
.
o
.
o
*}
V
m]/y%y/z6TC0o
.
o
.
o
z0g*Y2@+l
U0.
o
.
o
.
8gS;^&{?t&lk
u0o
.
o
.
o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是:
桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线

❿ 世界上最难的数学题目是什麽

11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。

他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。

电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。

这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。

“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。

不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。

哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。

1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。

这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。

从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。

热点内容
怎么做分录 发布:2025-08-24 08:33:23 浏览:40
什么是吊死 发布:2025-08-24 06:34:52 浏览:293
化学原料桶 发布:2025-08-24 05:27:35 浏览:855
央视地理节目 发布:2025-08-24 04:57:57 浏览:514
初一历史课本下册 发布:2025-08-24 02:19:47 浏览:810
化学需氧量的测定 发布:2025-08-24 01:24:14 浏览:500
我与老师的销魂初夜 发布:2025-08-23 23:39:36 浏览:499
新进教师培训总结 发布:2025-08-23 22:16:12 浏览:684
数学五大定律 发布:2025-08-23 21:14:06 浏览:489
优秀物理教具 发布:2025-08-23 19:26:57 浏览:209