当前位置:首页 » 语数英语 » 工程数学建模

工程数学建模

发布时间: 2021-07-28 01:24:55

数学建模中的工程问题主要有哪些要用到什么知识最好举例说明,谢谢!

某工程有甲、乙两队合作6天完成,厂家需付甲乙两队共8700元,乙、丙2队合作10天完成,厂家需付9500元,甲、丙2队合做5天完成全部工程的2/3,厂家需付5500元。
(1)求甲、乙、丙各队单独完成全工程需多少天?
(2)若要求不超过15天完成全部工程,问由哪队单独完成此工程花的钱最少?

用二元一次方程组解的步骤如下:
设甲乙丙每队每天各完成x,y
由“乙丙两对合作10天完成”
得丙每天完成(1/10-y)
再依据题意有:
(x+y)*6=1
(x+1/10-y)*5=2/3
解得x=1/10,y=1/15
即甲每天完成1/10,乙每天完成1/15,再算得丙每天完成1/30

工期要求不超过15天完成全部工程,所以可由甲或乙队单独完成这项工程
可设甲队每天酬金m元,乙队每天n元
由“乙丙两队合作10天完成,厂家需付乙丙两队共9500元”可得
得丙每天酬金为9500/10-n=950-n
同上部分一样,可列方程:
(m+n)*6=8700
(m+950-n)*5=5500
解得m=800,n=650
即甲队每天需800元,乙队每天需650元

所以,由甲队完成共需工程款800*10=8000
由乙队完成共需工程款650*15=9750
8000<9750
因此由甲队单独完成此项工程花钱最少,需要8000元,且能在15天内完成

工程问题主要就是要知道这里面的效率,时间,总量。这是最基础的

② 用来计算工程方量的数学建模软件有那些

数学软件概述:
(1)常见的一般数学套餐包括:Matlab和数学和枫树,其中Matlab的数值计算
知道,数学和Maple符号计算,推导知
(2)特殊的数学套餐包括:
图形软件类别:Mathcad是TECPLOT,IDL,冲浪,产地,SMARTDRAW,DSP2000
数值类别:Matcom的,DataFit,S-花键,林多,行话,O型矩阵,Scilab中,八度
数字图书馆:LINPACK / LAPACK / BLAS / GERMS / IMSL / CXML
FEM类别:ANSYS,MARC,PARSTRAN,FLUENT,FEMLAB,把FlexPDE,ALGOR,COSMOS,ABAQUS,ADINA
数理统计类:高斯,SPSS,SAS, Splus
排版数学公式类别:MathType中,MIKTEX,ScientificWorkplace,科学Nootbook
计算化学类:高斯98,斯巴达,ADF2000,ChemOffice

③ 土木工程中数学建模

数学建模在土木工程土方调配中的应用马南湘)广西建设职业技术学院公共课教学部-广西南宁(+$$$+,摘要"土木工程大型土方工程施工时-可以借助运筹学中的线性规划知识建立数学模型-经过若干运算步骤后最终确定运距最短的土方调配最优方案用以指导施工-以达到降低成本.取得较好经济效益的目的/关键词"线性规划0数学模型0表上作业法0土方调配中图分类号"1#**文献标识码"2土木建筑工程大型土方施工时-为了达到降低工程成本和造价的目的-常常需要在施工前-制订土方调配方案以指导施工-而在现场-许多工程施工人员制订方案往往仅凭一些常识和经验来做抉择/当然-凭经验有时也能得到一个较满意的方案-但当问题较复杂时-单凭经验和常识会遇到极大的困难-而此时借助运筹学的线性规划知识则可以较方便地获得一个目标明确的最优方案/下面笔者结合实例建立数学模型给出用线性规划知识来求土方调配最优方案的特殊方法33表上作业法/实际问题"某大型土方施工场地有4#.4*.4+.4’四个挖方区-5#.5*.5+.5’四个填方区-其相应挖.填方土方量和各对调配区运距如下图#所示-要求确定使得该场地运距最短效益最好的土方调配最优方案/图#调配区运距图图*土方调配图第*6卷增刊*$$+年#$月广西大学学报)自然科学版,789:9$因而这里可以不引用人工变量$而采用一种较为特殊的表上作业法求解,(编制初始调配方案制订初始方案时$采用优先对运距最小的调配区调配的原则进行$可以使目标函数减少运算次数,"!#由表!知$未知量%(!运距最小$由于*(6-000.)$+!6!000.)$故从*(中调!000.)到+!中即%(!6!000.)$由于?!已得足土方$故@!$@)$@-不再给土方$即A!6A)!6A-!60$相应的方格中填0,"(#再选一个运距最小的方格调配$在未调配的方格中$A-)的运距最小"10B#$*-6!000.)$+)6(000.)$于是%-)6!000.)$从而A-(6A--60,")#重复以上步骤$每次都对运距最小的方格进行调配$根据供需要求$尽可能满足该方格需要$依次求出其他ACD值$即得初始调配方案如表(

④ 什么是数学建模 应用在哪个具体领域 简略通俗

数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.
数学模型一般是实际事物的一种数学简化.它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别.要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等.为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代.
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的.数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿.经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术.培养学生应用数学的意识和能力已经成为数学教学的一个重要方面.
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步.建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题.这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面.数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之.为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程.为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作.通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题.数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果.接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能.培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等.

⑤ 土木工程学数学建模有意义吗

有。

1、建模真正将所学的数学知识转化为了结局实际问题的能力。

2、建模中会有很多从没有遇到的问题,锻炼了解决新问题的情况。面对一个数天难以解决的问题时,耐心和意志力都会得到锻炼。

3、建模不是一个人能够完成的任务,将会学习团队的分工合作,发现和利用自己所长之处。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,简单和可操作,数据易于采集。

(5)工程数学建模扩展阅读:

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音、录像、比喻、传言等等。

为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

⑥ 数学模型和数学建模主要是指工程设计领域的产品模型加工和设计过程.对么

错的,刚刚做的这题

⑦ 数学建模基本思想在工程管理方面的应用

所谓建模是用数学思想解类数学问题,或者简化成为数字处理,这么笼统的问......写论文都不止这么点东西

⑧ 数学建模是什么专业,主要是做什么的

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathematica,Matlab,Lingo,Spas,Mapple,甚至排版软件等。

⑨ 怎样进行力学建模比如对一个工程问题,具体在数学建模和物理建模方面

实际工程问题一般有两种解决方法,1是简化计算,2是数值模拟。两者都有些共同点,首先要确定研究对象,是建筑物还是机械,建立相应的实体模型,然后确定载荷,动载荷还是静载,再选择方法。力学发展至今解决工程问题方法已有很多,如平面问题可用差分法,复杂结构可用有限元,这类软件很多,查一下就知道。仅供参考

⑩ 求关于土木工程的数学建模案例

http://wenku..com/view/852928d33186bceb19e8bbf7.html?from=share_qq

数学建模在土木工程土方调配中的应用马南湘)广西建设职业技术学院公共课教学部-广西南宁(+$$$+,摘要"土木工程大型土方工程施工时-可以借助运筹学中的线性规划知识建立数学模型-经过若干运算步骤后最终确定运距最短的土方调配最优方案用以指导施工-以达到降低成本.取得较好经济效益的目的/关键词"线性规划0数学模型0表上作业法0土方调配中图分类号"1#**文献标识码"2土木建筑工程大型土方施工时-为了达到降低工程成本和造价的目的-常常需要在施工前-制订土方调配方案以指导施工-而在现场-许多工程施工人员制订方案往往仅凭一些常识和经验来做抉择/当然-凭经验有时也能得到一个较满意的方案-但当问题较复杂时-单凭经验和常识会遇到极大的困难-而此时借助运筹学的线性规划知识则可以较方便地获得一个目标明确的最优方案/下面笔者结合实例建立数学模型给出用线性规划知识来求土方调配最优方案的特殊方法33表上作业法/实际问题"某大型土方施工场地有4#.4*.4+.4’四个挖方区-5#.5*.5+.5’四个填方区-其相应挖.填方土方量和各对调配区运距如下图#所示-要求确定使得该场地运距最短效益最好的土方调配最优方案/图#调配区运距图图*土方调配图第*6卷增刊*$$+年#$月广西大学学报)自然科学版,789:;<=8>?9<;@ABC;BDE:FBGH)I<GJKBLM,N8=/*6-J9O/1KG/-*$$+!收稿日期"*$$+$P*$0修订日期"*$$+$6*6作者简介"马南湘)#QP(%,-湖南长沙人-广西建设职业技术学院高级讲师.工民建工程师/

!建立数学模型"!#编制土方调配表土方调配表如表!$表中%&’是待求土方调运量$其表示由第&个挖方区调运至第’个填方区的土方量"如%()是*(挖方区调运至+)填方区的土方量#$格内右边的数值是相应调配区的运距,表!土方调配表挖方区填方区+!+(+)+-挖方区".)#*!%!!!/0%!((00%!)!10%!-(-0!0000*(%(!20%((!-0%()!!0%(-!20-000*)%)!!/0%)()(0%))!(0%)-(00-000*-%-!!00%-(!)0%-)10%--!30!000填方区".)#!0002000(0004000!4000"(#建立数学模型目标函数56!/0%!!7(00%!(7!10%!)7(-0%!-720%(!7!-0%((7!!0%()7!20%(-7!/0%)!7((0%)(7!(0%))7(00%)-7!00%-!7!)0%-(710%-)7!30%--要求在满足如下约束条件情况下求出5的最小值,8-’6!%!’6!00008-’6!%(’6-0008-’6!%)’6-0008-’6!%-’9:;6!0008-’6!%!&6!0008-’6!%(&620008-’6!%)&6(0008-’6!%&-9:;64000由所建立的数学模型知$该问题属于一个线性规划问题$它当然可以用单纯形法求解$但该问题若用单纯形法求解$则需对每一个约束方程加一个人工变量而成为求解-7-个约束总共含有-<-7-7-个变量问题$这样的解题工作量相当大,现在我们细心观察一下模型$就会发现该模型很特殊$所有的约束方程都仅仅是各变量之和$即约束方程中各变量的系数不是=!>就是=0>$因而这里可以不引用人工变量$而采用一种较为特殊的表上作业法求解,(编制初始调配方案制订初始方案时$采用优先对运距最小的调配区调配的原则进行$可以使目标函数减少运算次数,"!#由表!知$未知量%(!运距最小$由于*(6-000.)$+!6!000.)$故从*(中调!000.)到+!中即%(!6!000.)$由于?!已得足土方$故@!$@)$@-不再给土方$即A!!6A)!6A-!60$相应的方格中填0,"(#再选一个运距最小的方格调配$在未调配的方格中$A-)的运距最小"10B#$*-6!000.)$+)6(000.)$于是%-)6!000.)$从而A-(6A--60,")#重复以上步骤$每次都对运距最小的方格进行调配$根据供需要求$尽可能满足该方格需要$依次求出其他ACD值$即得初始调配方案如表(

热点内容
给老师应该送什么礼物 发布:2025-08-16 17:29:59 浏览:959
中学英语课程 发布:2025-08-16 17:14:08 浏览:971
虚拟机和物理机 发布:2025-08-16 14:31:27 浏览:900
南昌市教育 发布:2025-08-16 14:22:12 浏览:681
哈尔滨教育行政网 发布:2025-08-16 13:03:35 浏览:624
丝袜美腿教师小说 发布:2025-08-16 11:29:51 浏览:775
幼儿保育老师工作总结 发布:2025-08-16 11:26:00 浏览:984
教师禁毒征文 发布:2025-08-16 08:21:33 浏览:632
关于师生恋的电影韩国 发布:2025-08-16 06:42:32 浏览:690
清华教育 发布:2025-08-16 06:29:47 浏览:766