数学常用集合
集合的概念
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母。任何集合是它自身的子集.
元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种。
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合”.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有传递性。
『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A �6�7 B。若 A 是 B 的子集,且 A 不等於 B,则 A 称作是 B 的真子集,写作 A �6�3 B。
所有男人的集合是所有人的集合的真子集。』
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2},应写成{1,2}。
无序性:{a,b,c}{c,b,a}是同一个集合。
集合有以下性质:若A包含于B,则A∩B=A,A∪B=B
集合的表示方法:常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3.图式法﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
常用数集的符号:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,记作R
(6)复数集合计作C
集合的运算:
1.交换律
A∩B=B∩A
A∪B=B∪A
2.结合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
2德.摩根律
Cs(A∩B)=CsA∪CsB
Cs(A∪B)=CsA∩CsB
3“容斥原理”
在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A={a,b,c},则card(A)=3
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
1985年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。
吸收律
A∪(A∩B)=A
A∩(A∪B)=A
求补律
A∪CsA=S
A∩CsA=Φ
② 数学集合里的好集什么
当有理数a是集合元素时,有理数8-a也必是这集合的元素,这样的集合我们称为“友好集合”
③ 数学集合的符号有哪些
1.如果a是集合A的元素,则a属于A,记作a∈A,反之则在符号上从右向下划一斜杠
2.如果要写出某个集合的元素,则写作A={...},括号内写出元素或元素的特征
3.若x∈A→x∈B,则集合A是B的子集,记作AUIB(UI顺时针旋转90°)
4.若A与B中元素完全一样,则A=B
5.不含任何元素的集合为空集,记作Ø
6.若x∈A或x∈B,则他们所组成的集合称作A与B的并集,记作A∪B
7.若x∈A且x∈B,则他们所组成的集合称作A与B的交集,记作A∩B
8.我们通常把我们研究问题中所有元素组成的集合称为全集,记作U
9.若x∈U且x不属于A,则他们所组成的集合称作A相对于U的补集,记作CuA
10.若x∈A且x不属于B,则他们所组成的集合称作A与B的差集,记作A/B
11.另外还有一些常用数集:N(自然数集) N+(正整数集) Z(整数集)
Q(有理数集) R(实数集)
希望楼主喜欢!
④ 常用数学集合符号,求全部,另外到底是加号表示正的,还是星号
R
实数集
Q
有理数集
Z
整数集
N
自然数集
N+(或N*)正整数集
空集
圈上面一斜线(这个符号打不出来)
∈
属于
x∈A
x属于A,即x是集合A的一个元素
∩
交
A∩B
A与B的交集
∪
并
A∪B
A与B的并集
CuA
全集U中子集A的补集
希腊字母小写
α
β
γ
δ
ε
ζ
η
θ
θ
ι
κ
λ
µ
ν
ξ
ο
π
ρ
τ
υ
φ
χ
ψ
ω
大写
Α
Β
Γ
∆
Ε
Ζ
Η
Θ
Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π
Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
数学符号
±
+
-
×
÷
/
√
∑
∏
≈
≠
=
≤
≥
<
>
≮
≯
∫
∮
→∨
∵
∴
﹁∪
∩
∈
⊥
∥
∠
⌒
⊙
≌
∽
∀∞
正负是加号
⑤ 数学集合符号都有哪些
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:
1、全体非负整数的集合通常简专称非负整数集(属或自然数集),记作N。
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
3、全体整数的集合通常称作整数集,记作Z。
4、全体有理数的集合通常简称有理数集,记作Q。
5、全体实数的集合通常简称实数集,记作R。
6、复数集合计作C。
(5)数学常用集合扩展阅读:
1、集合,是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
2、元素与集合的关系有:“属于”与“不属于”两种。
3、集合的运算:
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
参考资料:搜狗网络_数学集合
⑥ 数学集合
A={x|0<x≤10,x为偶数}={x|0,2,4,6,8,10}
B={x|0<x≤10,x为质数}={x|2,3,5,7}
AB交集={x|2}
AB并集={x|0,2,3,4,5,6,7,8,10}
没问题请采纳,有问题可追问
⑦ 数学集合中,N,N*,Z,Q,R,C分别是什么意思
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)
3、全体整数的集合通常称作整数集,记作Z
4、全体有理数的集合通常简称有理数集,记作Q
5、全体实数的集合通常简称实数集,记作R
6、复数集合计作C
(7)数学常用集合扩展阅读
一、集合的运算:
1、集合交换律:
A∩B=B∩A
A∪B=B∪A
2、集合结合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
二、集合的表示方法:常用的有列举法和描述法。
1、列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2、描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3、图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
⑧ 数学中,集合有哪几种字母,分别是什么意思
数学中的集合字母和意思:
N:非负整数集合或自然数集合{0,1,2,3,……}
N*或N+:正整数集合{1,2,3,……}
Z:整数集合{……,-1,0,1,……}
P:质数集合
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合
R+:正实数集合
R-:负实数集合
C:复数集合
∅:空集合(不含有任何元素的集合称为空集合)
U:全集合(包含了某一问题中所讨论的所有元素的集合)
(8)数学常用集合扩展阅读:
一、集合的特性:
(1)确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
(2)互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
(3)无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。(参见序理论)
(4)符号表示规则
元素则通常用a,b,c,d或x等小写字母来表示;而集合通常用A,B,C,D或X等大写字母来表示。当元素a属于集合A时,记作a∈A。假如元素a不属于A,则记作a∉A。如果A和B两个集合各自所包含的元素完全一样,则二者相等,写作A=B。
二、集合的运算定律:
(1)交换律:A∩B=B∩A;A∪B=B∪A
(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
(3)分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
(4)对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
(5)同一律:A∪∅=A;A∩U=A
(6)求补律:A∪A'=U;A∩A'=∅
(7)对合律:A''=A
(8)等幂律:A∪A=A;A∩A=A
(9)零一律:A∪U=U;A∩∅=∅
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A
(11)反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A与集合B的交集的补集等于集合A的补集与集合B的补集的并集; 2.集合A与集合B的并集的补集等于集合A的补集与集合B的补集的交集。
(12)容斥原理(特殊情况):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
⑨ 数学集合符号都有哪些
数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅ :空集(不含有任何元素的集合)
(9)数学常用集合扩展阅读:
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。