七年级数学第一章
A. 初一数学第一章知识结构图
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο
B. 七年级数学第一章小结
有点长。。。你简单写写吧~ 第一章 整式的运算
1、 整式:
只含“×”“÷”运算的代数式叫单项式
含“×”“÷”“+”“—”的代数式叫多项式
2、 整式的加减:
(1)去括号时,括号前是“+”时,直接去括号。
(2)去括号时,括号前是“—”时,括号内符号要变号。
(3)整式加减的实质是合并同类项。
3、 同底数幂的乘法:
同底数的幂相乘,底数不变,指数相加。
4、 幂的乘方与积的乘方:
(1)幂的乘方,底数不变,指数相乘。
(2)积的乘方,等于各个底数的乘方。
5、 同底数的幂的除法:
(1)同底数的幂相除,底数不变,指数相减。
(2)零指数和负整数指数:a0= 1 (a≠0)
a-p =1/ap (a≠0,p为正整数)
6、 整式的乘法:
(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(2)单项式与多项式相乘:m(a+b)=ma+mb
(3)多项式与多项式相乘:(m+n)(a+b)=ma+na+mb+nb
7、 平方差公式:
(1)平方差公式:(a+b)(a-b)=a2-b2
(2)两数和与这两数差的积,等于它们的平方差。
8、 完全平方公式
(1)完全平方公式:(a±b)2=a2±2ab+b2
(2)两个完全平方公式之间的关系:
(a+b)2-(a-b)2=4ab
9、 整式的除法:
(1)单项式相除,把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章 并行线与相交线
1、 余角与补角:
(1) 如果两个角的和是直角,那么称这两个角互为余角。
(2) 如果两个角的和是平角,那么称这两个角互为补角。
(3) 同角或等角的余角相等,同角或等角的补角相等。
(4) 对等角相等。
2、 探索直线平行的条件:
(1) 同位角相等,两直线平行。
(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
3、 并行线的特征:
(1) 两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行,同旁内角互补。
4、 用标尺作线段和角:
(1) 只用没有刻度的直尺和圆规作图称为标尺作图。
(2) 标尺作图时,直尺的功能是:作①直线,②线段,③射线;圆规的功能是①画图,②画弧。
5
第三章 生活中的资料
1、 认识百万分之一:
1米=106微米,1米=109纳米,
百万分之一米即1微米=10-6米,1纳米=10-9。
2、 近似数和有效数字:
(1) 测量的结果都是近似的。
(2) 利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
(3) 对于一个近似数,从左边第一个不是0的数字数起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
3、 世界新生儿图:
(1) 我们知道的统计图有:条形统计图,扇形统计图,折线统计图。
(2) “象形统计图”的实质就是图形统计图。
第四章 概率
1、 游戏公平吗:
(1) 游戏公平是指双方获胜的可能性相同,只有当双方获胜的可能性相同时,游戏才公平,否则游戏不公平。
(2) 利用数轴上0、1之间的部分表示可能性的大小。
必然发生的可能性用1表示,不可能事件发生的可能性用0表示,不确定事件发生的可能性在0~1之间。
2、 摸到红球的概率:
(1) 通常用P=摸到红球可能出现的结果数/摸出一球所有可能出现的结果数
来表示摸到红球的可能性,也称为摸到红球的概率。
(2) 必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
3、 停留在黑砖上的概率:
几何概型的意义:几何事件发生的概率等于该事件所有可能所组成图形的面积除以所有可能结果所组成图形的面积。
P不确定事件=不确定事件的面积/时间总面积
第五章 三角形
1、 认识三角形:
(1) 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形
(2) 两点之间的所有连线中,直线最短。
(3) 三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
(4) 三角形的内角和为180。;直角三角形的两个锐角互余。
(5) 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。
(6) 在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(7) 从三角形的一个顶点向它的对边所在直线作垂线,顶点与对边之间的线段叫做三角形的高线。
2、 图形的全等:
两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。
3、全等三角形:
全等三角形的对应边相等,对应叫相等。
4、 探索三角形全等的条件:
(1) 三边对应相等的两个三角形全等,简写为边边边或SSS。
(2) 两角和它们的夹边对应相等的两个三角形全等,简写为角边角或ASA。
(3) 两角和其中一角的对边对应相等的两个三角形全等,简写为角角边或AAS。
(4) 两边和它们的夹角对应相等的两个三角形全等,简写成边角边或SAS。
5、 作三角形:
。。。。。。。。。。。。。。。。
6、 利用三角形全等测距离
判定三角形全等的方法有角角边、角边角、边角边、边边边。
7、 探索直角三角形全等的条件:
(1) 斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”
(2) 判定两个直角三角形全等,方法有HL,SAS,ASA,SSS,AAS。共五种。
第六章 变量之间的关系
1、 小车下滑的时间:
在某一变化中,不断发生改变的量叫做变量。如果一个量随着另外一个量的变化而变化,那么把这个量叫做自变量,另外一个量叫做因变量。
2、 变化中的三角形:
关系式是我们表示变量之间关系的另一种方法,利用关系式,我们可以根据任何一个自变量的值求出相应的因变量的值。
3、 温度的变化:
图象是表示变量之间关系的一种方法,它的特点是非常直观。在用图象表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示自变量,用竖直方向的数轴(纵轴)上的点表示因变量。
4、 速度的变化:
在速度随时间的变化图象中,一般“水平线”表示是汽车匀速行驶,“上升的线”表示汽车的速度在增加,“下降的线”表示汽车在减速。
第七章 轴对称图形
1、 轴对称现象:
(1) 如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
(2) 对于两个图形,如果沿一条直线对折后,它们能够互相重合,那么说这两个图形成轴对称。
2、 简单的轴对称图形:
3、 (1)角是轴对称图形,有一条对称轴。角平分线所在的直线是它的对称轴,角平分线上的点到这个角的两边的距离相等。
4、 (2)线段是轴对称图形,它的对称轴垂直于这条线段且平分这条线段,这样的直线叫这条线段的中垂线,线段的垂直平分线上的点到这条线段两个端点的距离相等。
5、 (3)等腰三角形是轴对称图形,等腰三角形的顶角平分线,底边上的高重合,它们所在的直线都是等腰三角形的对称轴。
6、 (4)等边三角形有3条对称轴,三个内角的平分线或三边的中线或三边上的高所在的直线都是它的对称轴。
7、 (5)等腰三角形的两个底角相等,如果一个三角形有两个内角相等,那么它们所对的边也相等,等边三角形的三个内角相等,且都等于60度。
8、 3、探索轴对称的性质
(1)对应角相等,对应线段相等。
(2)对应点所连的线段被对称轴垂直平分。
4、利用轴对称设计图案:
(1)利用轴对称性质作图时,只要作出图形中几个关键点的对称点,顺次连接这些点即可。
(2)设计轴对称图形可选择扎眼,墨迹,折叠,剪纸,画图,或利用计算相等形式。
5、镜子改变了什么:
(1)镜面对称是轴对称,根据镜子与物体的相对位置不同,对称轴也不一样。
(2)镜子不改变物体的上和下,但改变了物体的上下关系。
6、镶边与剪纸:
镶边与剪纸都是轴对称知识的应用。
C. 初一数学第一章复习要点
俊狼猎英团队为您解答
一个工具:数轴;
两个符号:负号、绝对值符号;
五个概念:负数、有理数、相反数、绝对值、非负数;(倒数小学就有)
五种运算:加、减、乘、除、乘方;
科学记数法、有效数字。
运算不说, 所有概念中基本都与数轴有关:
⑴有理数都罗列在数轴上,可以用来有理数的一种分类(正数、0、负数),可看出相反数,可看出绝对值的意义,可比较大小(右边的数比左边的大)。
⑵倒数是小学的继续。
⑶运算注意计算的顺序。
提供一组练习:(概念辨析方面)
有理数的分类
判断正误:
一个有理数非正即负。
一个有理数不是整数就是分数
有理数指整数、分数、正有理数、负有理数和零这五类数
有理数是自然数和负数这两类数的统称。
①|2|=__,|-2|=___,|0|=__
②用自然语言说出绝对值的意义
③用字母表示绝对值的意义
④绝对值的几何意义
如果|x|=2,则x=__,|x|=-2,x=____
一个数的相反数是正数,这个数一定是( )
数轴上有一点到原点距离为5,这点表示数( )
绝对值等于4的数是( ),绝对值小于3的整数是( )
任何有理数的绝对值都是正数,对吗?
任何有理数的绝对值不都是正数,对吗?
任何有理数的绝对值都不是正数,对吗?
例题:
①若a是有理数,则-a是( )
是负数,B)不是负数,C)是a的相反数,D)不等于0.
②如果两个数的差是正数,那么这两个数()
A)都是正数,B)都不是正数,C)不都是正数,D)以上都有可能。
③若ab=0,则()
A)a一定是0,B)b一定是0,C)a是0或b是0,D)a、b中至少一个是0。
④若|a|+|b|=0,那么
A)a=0,B)b=0,C)a=0或b=0,D)a=0且b=0.
练习:
1、一个数a与原点的距离叫做该数的___________
2、互为相反数的两个数的绝对值_________
3、一个数的绝对值越小,则该数在数轴上所对应的点,离原点越___________
4、-的绝对值是_________
5、绝对值最小的数是_________
6、绝对值等于5的数是___________,它们互为_____________
7、若b<0且a = | b | ,则 a 与 b的关系是____________
8、如果 | a | = -a ,那么 a ______0
9、如果 | a | = a ,那么 a ______0
10,已知 | a-2 | + |b+3 | + | c+5 | = 0,
则 a =_____,b =_______,c = _______
11、_______的倒数是它本身,_______的绝对值是它本身。
12、a+b=0,则a与b_______、
13,绝对值是2的数有_____个,它们是_____。
14、相反数等于它本身的数是________
15、-3.5的倒数是_____, 相反数是______.
17、若|b+1|=3,则b=( )
(A)2 (B)- 4 (C)2 或- 4 (D)以上答案都不对
18、下列说法不正确的是 ( )
(A)0既不是正数,也不是负数 (B) 1是绝对值最小的数
(C)一个有理数不是整数就是分数 (D)0的绝对值是0
19、绝对值小于3的所有整数的和是( )
(A)3 (B)-3 (C)0 (D)6
20、一个有理数的倒数是它本身,这个数是( )
(A)0 (B) 1 (C) (D)1或-1
21、若|x+2|=-a,则a 是 ( )
A.0 B.正数 C.负数 D.负数或0
22.在数轴上表示的两个数中, _______的数总比________的数大。
D. 七年级上册数学第一章有理数的知识点归纳
计数:表示物体的数量
测量:表示测量的结果
标号和排序:表示序号
有理数分为分数和专整数,证属整数包括正整数,负整数和0.分数包括正分数和负分数。
有理数的加减要注意符号,例:12-(12-1)就要去括号加上括号里的相反数,就是12-12+1
有理数乘除要注意
画数轴要标出原点,正方向,单位长度
绝对值要注意负数的绝对值是正数,证书的绝对值是正数。
有理数大小比较法则:正数大于零,负数小于零,正数大于负数。。
两个负数比较大小,绝对值越大,他就越小;正数相反。
谢谢,希望能采纳
以后不懂可以求助,以百分百之心。
E. 七年级(上)数学第一章
七年级上数学第一章有理数单元检测试题
班级 学号 姓名 成绩
一、填空题(每题3分,共24分)
1、计算-3+1= ; ; 。
2、“负3的6次幂”写作 。 读作 ,平方得9的数是 。
3、-2的倒数是 , 的倒数的相反数是 。
有理数 的倒数等于它的绝对值的相反数。
4、根据语句列式计算: ⑴-6加上-3与2的积: ;
⑵-2与3的和除以-3: ;
⑶-3与2的平方的差: 。
5、用科学记数法表示:109000= ;
89900000≈ (保留2个有效数字)。
6、按四舍五入法则取近似值:70.60的有效数字为 个,
2.096≈ (精确到百分位);15.046≈ (精确到0.1)。
7、在括号填上适当的数,使等式成立:
⑴ ( );
⑵8-21+23-10=(23-21)+( );
⑶ ( )。
8、在你使用的计算器上,开机时应该按键 。当计算按键为
时,虽然出现了错误,但不需要清除,补充按键 就可以了。
二、选择题(每题2分,共20分)
9、①我市有58万人;②他家有5口人;③现在9点半钟;④你身高158cm;⑤我校有20个班;⑥他体重58千克。其中的数据为准确数的是( )
A、①③⑤ B、②④⑥ C、①⑥ D、②⑤
10、对下列各式计算结果的符号判断正确的一个是( )
A、 B、
C、 D、
11、下列计算结果错误的一个是( )
A、 B、
C、 D、
12、如果a+b<0,并且ab>0,那么( )
A、a<0,b<0 B、a>0,b>0 C、a<0,b>0 D、a>0,b<0
13、把 与6作和、差、积、商、幂的运算结果中,可以为正数的有( )
A、4个 B、3个 C、2个 D、1个
14、数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是( )
A、-5+(-2) B、-5-(-2) C、|-5+(-2)| D、|-2-(-5)|
15、对于非零有理数a:0+a=a,1×a=a,1+a=a,0×a=a,a×0=a,a÷1=a,0÷a=a,a÷0=a,a1=a,a÷a=1中总是成立的有( )
A、5个 B、6个 C、7个 D、8个
16、在数-5.745,-5.75,-5.738,-5.805,-5.794,-5.845这6个数中精确到十分位得-5.8的数共有( )
A、2个 B、3个 C、4个 D、5个
17、下列说法错识的是( )
A、相反数等于它自身的数有1个 B、倒数等于它自身的数有2个
C、平方数等于它自身的数有3个 D、立方数等于它自身的数有3个
18、判断下列语句,在后面的括号内,正确的画√,错误的画×。
⑴若a是有理数,则a÷a=1 ;( )
⑵ ; ( )
⑶绝对值小于100的所有有理数之和为0 ;( )
⑷若五个有理数之积为负数,其中最多有3个负数。( )
三、计算下列各题。(共46分)
17、直接写出计算结果。(每小题3分,共15分)
⑴ ; (2) ;
⑶ ; ⑷ ;
⑸ 。
18、利用运算律作简便运算,写出计算结果。(每小题5分,共10分)
⑴ ⑵
19、计算题。(每小题7分,共21分)
⑴ ⑵
⑶某数加上-5,再乘以-2,然后减去-4,再除以2,最后平方得25,求某数。
四、解答下列各题(每小题5分,共10分)
20、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,100.7,103,95.5,按下列要求计算:
⑴观察这8个数,估计这8只猪的平均质量约为 千克;
⑵计算每只猪与你估计质量的偏差(实际质量-估计质量)分别为:
⑶计算偏差的平均数(精确到十分位)
所以这8只猪的平均质量约为 。
21、要把一笔钱寄给别人,可以从邮局汇款,也可以从银行汇款。根据1996年12月1日邮电部公布的邮政汇费规定,每笔汇款按1%收费,最低汇费为1 元。银行汇款的规定是:未开户的个人汇款,5000元以下的按1%收汇费,5000以上(含5000元),每笔汇费统一收50元。王老师想给远方的希望小学汇款8000元,没有在银行开户,根据以上规定,王老师从哪里汇款所需汇费较少?
B卷
1、 观察算式:
按规律填空(2分) _______________
(2分) _________
…… ……
(2分) ______________
若n为正整数,试求:
的值,并写出求值过程。(5分)
2、已知:a = 、b= ,c= ,试比较a、b、c的大小。(5分)
3、个楼梯共有10级台阶,规定每步可上一级或二级台阶,最多可以上三级台阶,从地面到最高一级,一共有几种不同上法?(4分)
F. 初中数学七年级上册地第一章的知识总结
初一数学第一章知识点总结
一、正数和负数
1、以前学过的0以外的数前面加上负号“-”的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值
1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较
1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法
1、有理数的加法法则
(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律
(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a
(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即 (a+b)+c=a+(b+c)
八、有理数的减法
1、有理数减法法则
减去一个数,等于加这个数的相反数。即a-b=a+(-b)
九、有理数的乘法
1、有理数的乘法法则
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0。
(3)乘积是1的两个数互为倒数。
(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(5)几个数相乘,有一个因数为零,积就为零。
2、有理数的乘法的运算律
(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac
十、有理数的除法
1、有理数除法法则
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)零不能作除数。
(3)两数相除,同号得正,异号得负,并把绝对值相除。
(4)0除以任何一个不等于0的数,都得0。
十一、有理数的乘方
1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
2、负数的奇次幂是负数,负数的偶次幂是正数。
3、正数的任何次幂都是正数,0的任何正整数次幂都是0。
十二、有理数混合运算的运算顺序
1、先算乘方,再算乘除,最后算加减;
2、同极运算,从左到右进行;
3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
十三、科学记数法
1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
2、用科学记数法表示一个n位整数,其中10的指数是n-1。
十四、近似数和有效数字
1、接近实际数目,但与实际数目还有差别的数叫做近似数。
2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
3、从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
4、对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。