当前位置:首页 » 语数英语 » 数学中的物理

数学中的物理

发布时间: 2021-07-29 08:57:23

⑴ E在数学物理学)中代表什么

e在数学中是一个无限不循环小数,其值约等于2.71828182845,它是一个超越数。

数学的定义是:

在物理学中是指元电荷,即基本电荷。

基本电荷又称“基本电量”或“元电荷(elementary charge)”。在各种带电微粒中,电子电荷量的大小是最小的,人们把最小电荷叫做元电荷,也是物理学的基本常数之一,常用符号e表示。基本电荷e=1.602176565(35) ×10^-19库仑,(通常取e=1.6×10^-19C)。是一个电子或一个质子所带的电荷量。任何带电体所带电荷都是e的整数倍或者等于e。(夸克除外,它是已知唯一的基本电荷非整数的粒子)

⑵ 数学在物理学中的应用

、微分复方程的解算:很多物理问题,制比如在经典力学和量子力学中求解运动方程,都可以被归结为求解一定边界条件下的微分方程。因此求解微分方程成为数学物理的最重要组成部分。相关的数学工具包括:
常微分方程的求解
偏微分方程求解
特殊函数
积分变换
复变函数论

⑶ 数学知识在物理中的应用

数学是一门非常重要的基础学科,尤其在理解物理概念、物理规律以及解决物理问题时,数学知识起着重要的工具作用。有些初中学生数学学得比较好,但物理不一定学得好,因为这些学生往往用纯数学的思维方式理解物理概念、规律或求解物理问题,这样就造成了学生在应用数学知识解决物理问题时容易出现错误,解决上述问题的有效途径就是把物理问题转化为数学问题,有效的运用数学知识来解决物理问题。一、用数学式子表达物理概念、物理规律,用字母表达物理量、已知量、未知量。初中学生初学物理时往往对用符号表示物理量之间的关系式不习惯,不会应用这些物理量的符号去表示相应的数字信息,不清楚公式中的符号哪些是已知的,哪个是未知的,导致公式变形出错,乱套公式,物理结果出错。 解决途径:(1)首先引导学生学会“读题 → 标量 → 选公式”的方法。即学生边读题,边在相应的数字下面标上相应的物理量的符号,这样做的目的就是明确了已知量和未知量,再根据物理问题情境选择恰当的公式来求解。(2)解题时强调运用“三步法”,即“公式 → 带入数据 (数字+单位) → 结果(数字+单位)”。要让学生明确物理公式是解决物理问题的重要依据,所以要先写出公式,再带入相应的数字和单位,然后运用数学知识进行计算得结果。(3)物理量用规定的符号来表示,学生往往不能把字母和它表示的物理量联系在一起。如学生在数学中未知数都可以用X、Y表示,有时学生在解决物理问题时,不管是求哪个物理量,他们都用X、Y表示,这样不便于理解物理含义。在分析题时让他们在物理量的旁边写出表示这个物理量的符号,再看求哪个量就用他在这个物理量旁边标出的字母来表示。 通过不断强化及练习,学生学会了运用数学能力来求解物理问题,使学生对符号的认识由不熟悉到能够灵活运用。二、用方程表达物理关系、解决物理问题。学生往往在数学中会列方程解方程,但不会求解物理关系式。 解决途径: 教师应教会学生将物理关系式与数学方程概念有机的结合起来,让学生理解物理关系式实际上是将方程概念赋予了具体实际的内容。在建立物理情境的基础上,利用数学方法求解物理问题。 例如:用弹簧测力计提着体积为10cm3的铁块浸没水中,不触底,此时用弹簧测力计的示数多大? 引导学生分析:求弹簧测力计的示数多大,实际是求铁块在水中受到向上的拉力多大。(1)受力分析,画出受力示意图,如图:重力、浮力、拉力。(2)引导学生分析能求哪些量:如:F浮= ρ水 gV铁,G=ρ铁 gV铁(3)建立力的平衡式 F拉 + F浮=G (4)代入求解 F拉 =G + F浮 可以看出物理中力的平衡式实际上就是数学中的方程式,教师再引导学生利用数学方程思想来求解物理问题。通过例题分析、训练,学生逐步增强数理结合的意识,能将物理问题自觉地灵活地转化为受物理规律制约及显示物理规律、物理情境的数学问题。三、用分式的性质等量代换的思想进行单位换算。初学物理的学生在单位换算方面成为学习物理知识的障碍。 解决途径: 首先让学生理解物理中的单位换算,实际上是数学中的等量代换思想的体现,其次让学生理解记忆基本换算关系。例如:速度的单位换算,引导学生运用数学方法:(1)分子分母分别换算法 例如:20m/s = 20 = 72km/h(2)利用速度进率法:1 m/s = 3.6 km/h20m/s = 20 3.6 km/h = 72km/h 通过分析比较,让学生理解单位换算的方法和技巧,今后能灵活自如的进行单位换算,不要让单位换算成为学生学习物理的障碍。四、区分物理平均与数学平均。 学生对物理中的平均概念的理解往往停留在数学的平均思想上,不注意条件,不注意适用范围,导致结果出错。 解决途径: 教师要引导学生理解物理中的平均与数学中的平均概念的区别,要特别注意公式的适用条件和适用范围。 例如:求平均速度问题,原则上应该是,S代表总路程,t代表通过路程S所用的总时间。(1)一个物体做直线运动,前一半路程的速度为 1,后一半路程的速度为 2,求全程的平均速度。隐含的条件是 S1 = S2 = S 但是有一些学生不理解物理上平均速度的含义,直接利用数学上的平均思想解题得出的错误结论 。(2)一个物体做直线运动,前一半时间速度为 1,后一半时间速度为 2,求全程的平均速度。隐含的条件是 t1=t2 = t 又如:伏安法测电阻,多次测量利用数学的加权法求平均电阻值有实际意义。而电功率的平均值没有实际意义。 可见应用数学知识分析物理问题时要特别注意物理学科的特殊性,注意概念的物理含义和规律成立的条件,因此我们在物理教学中要强化物理意义、物理内涵,公式形成过程的指导以及物理规律成立的条件,以使学生在扎实的物理基础上恰当、灵活地应用数学知识解决物理问题。五、利用函数图像理解物理意义。 物理规律、物理量之间的关系可以用图像表达出来。但是有的学生不能将函数图像与物理知识联系起来,造成解决物理题的困难。 解决途径:首先让学生明确,横纵坐标表示什么物理量,再分析这个图像表示的物理意义。 例如:一个正比例函数图像,斜率表示密度ρ=m/v,即m与v成正比,也就是说同种物质,质量增大多少倍,体积也增大多少倍,比值不便,这个比值就是密度。这样有利于学生理解密度是物质的一种特性。 总之,运用数学知识解决物理问题的有效途径,就是把数学知识、数学思维方法迁移到学习物理上来。因此教师在教学中应强化数理知识的结合,利用多渠道的有效途径,促进数学知识的迁移,学生才能更好的利用数学知识来解决物理问题。

⑷ E在数学(物理学)中代表什么

数学中可以用来表示期望值(平均值),但是在概率论里面,正太分布以后便通常说是期望值。
物理学中则可以用来表示机械能或者是概念性的总能量。

⑸ 数学专业中的物理学主要包括哪几个方面啊

我是数学与应用数学的,师范生,物理好像就学了两本书,叫普通物理。普通物理学包括:力学、热学、电磁学、光学、原子物理学,但不包括相对论和量子力学以及物理学的前沿内容。随着科学的发展,“相对论"和"量子力学"以及物理学的前沿内容渐渐地进入了《普通物理学》。为了区分一下,后来有了"大学物理"的提法。 现在,《普通物理学》和"大学物理学"就是同一门课,内容基本一样。

⑹ 数学和物理的区别

1、概念不一样:数学是研究数量、结构、变化、空间以及信息等概念的一门学科。而物理则是研究物质运动最一般规律和物质基本结构的学科。

2、精密性不一样:物理的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,是当今最精密的一门自然科学学科。数学在精密性这方面相对来说不像物理那般,而是用严谨性来形容。

3、起源不一样:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。物理则是起源于人类社会实践的发展。

(6)数学中的物理扩展阅读:

数学简史:

西方数学简史

数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。

第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了。

中国数学简史

数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。

物理简史:

伽利略·伽利雷(1564~1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。

当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进“没有昨日的基础科学就没有今日的技术革命”。

⑺ 高中物理中的数学知识

包括但不限于:简单的微积分,导数,极限思想,简单的线性代数知识。

⑻ 数学中的物理问题

重心距底边的距离为底边中线长的1/3,为5米。
V=3.14X(10^2)X15/3=1700m^3
m=1X10^3X1700=1.7X10^6kg
G=1.7X10^6X10=1.7X10^7N
W=1.7X10^6X10=1.7X10^7X5=8.5X10^7J

⑼ 数学在物理中的运用

数学是研究物理学的有力工具,不论是物理实验的测量和计算,物理概念和规律的表达,还是习题求解等,都离不开数学的应用.但是,数学只是工具.作为工具用的数学必须与物理现象的内容统一,而且还受到具体的物理条件的制约,所以运用数学解决物理问题的能力培养必须充分考虑到物理学科的特点。

众所周知,物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物。打好数学基础要从高中做起 ,培养学生的数学思想,创新能力,更好的与大学课程接轨,更早的把高中生带到物理殿堂。
下面以一题为例说明一下数学思想在物理中的应用:
【例一】如图所示,一根一段封闭的玻璃管,长L=96厘米内有一段h1=20厘米的水银柱,当温度为27摄氏度,开口端竖直向上时,被封闭气柱h2=60厘米,温度至少多少度,水银才能从管中全部溢出?
解:首先使温度升高为T0以至水银柱上升16厘米,水银与管口平齐,此过程是线性变化。温度继续升高,水银溢出,此过程不再是线性关系。设温度为T时,剩余水银柱长h,对任意位置的平衡态列方程:

(76+ h1)×60/300=(76+h) ×(96-h)/ T 整理得:

T=(-h2+20h+7296)/19.2

h的变化范围0——20,可以看出温度T是h的二次函数,此问题转化为在定义域内求T的取值范围,若Tmin<T<Tmax,只有当温度T大于等于Tmax 才能使水银柱全部溢出,经计算所求值Tmax =385.2 。

只有通过二次函数极值法,才能从根上把本体解决。加强数学思想的渗透是新教材新的一个体现,比如:“探索弹簧振子周期与那些因素有关”,“探索弹簧弹力与伸长的关系”。在实际教学过程中应该引起高度重视并加以扩展。

大学物理课程与高中物理课程跨度较大,难点在于运用数学手段探索性研究物理问题的方法,另外微积分思想比较难以理解,为了与大学物理课程更好的接轨,在高中阶段对学生进行微积分思想的渗透也是非常必要的。因此在高中物理教学过程中应抓住有利时机渗透微元思想,为学好微积分奠定良好的基础。渗透的内容应该有两方面:一是变化率,二是无限小变化量,比如:

在讲速度时,平均速度v=△s/t,即时速度呢?△s/t就是变化率,当△s取无限小时,v就可以理解为某一时刻的速度——即使速度。加速度a= △v/t, △v/t是速度变化率,当△v取无限小时,加速度a就可以理解为某一时刻的加速度。象这样的例子还有w/t,I/t, △φ/t等等。总之高中物理教师应当根据学生的具体情况适当的渗透微积分的思想并加以配套练习,达到巩固理解的目的。下面讨论一个相关题目。

【例二】一竖直放的等截面U形管内装有总长为L的水银柱, 当它左右两部分液面做上下自由振动时,证明水银柱的振动时间谐振动。

解:设两液面相平时速度为V0,建立坐标如图。

当有液面上升x时,液体速度为v,则根据能量守恒的

mv02/2=△mgx1 +mv12/2 ⑴

△m=mgx1/L ⑵

⑵带入⑴得

mv02/2=mgx12/L +mv12/2 ⑶

当液面在上升△x时,x2=x1+△x 则

mv02/2=mgx22/L +mv22/2 ⑷

⑷减⑶ 得

0=(x22-x12)mg/L+m(v22-v12)/2化简得:

0=(x1+x2) mg△x/L+m(v12-v22)/2 ⑸

△x很小,则认为加速度a不变,根据运动学公式得:

v12-v22=2ax带入⑸得

0=2x△xmg/L+2ma△x/2 ⑹

即:F=-2mgx/L 2mg/L为常数K,证得水银柱的振动为简谐振动。

⑽ 数学在物理中的作用

是基础,做物理题需要有数学思维,尤其是后面的大题。不过都是有套路的,只要你多看,多做历年的理综,高分不是困难。数学老师做不了物理老师,但是物理老师可以做数学老师。

热点内容
渭南教育 发布:2025-08-05 15:55:51 浏览:384
什么是内审员 发布:2025-08-05 15:30:50 浏览:755
校园自助打印机怎么用 发布:2025-08-05 15:13:52 浏览:950
傲慢的近义词是什么 发布:2025-08-05 15:10:22 浏览:631
2015年师德师风计划 发布:2025-08-05 14:13:14 浏览:764
大学物理试卷及答案 发布:2025-08-05 13:39:51 浏览:75
诫子书教学设计 发布:2025-08-05 12:52:28 浏览:797
在机场的英语 发布:2025-08-05 12:18:42 浏览:561
数学2017全国卷文科 发布:2025-08-05 11:25:28 浏览:147
2017年教师师德总结 发布:2025-08-05 11:19:05 浏览:765