当前位置:首页 » 语数英语 » 数学的专业

数学的专业

发布时间: 2021-07-30 17:54:50

① 大学数学系有哪些专业

包括:数学与应复用数学、信制息与计算科学、数理基础科学3个专业。

拓展资料:

数学与应用数学专业简介:

本专业主要培养掌握数学科学的基本理论与基本方法,需要学生具备基础运用数学知识、使用计算机解决现实中实际问题的能力,受科学研究方向的具体初步训练,可在科技、教育和经济部门一般性从事研究、教学工作。或在生产经营,管理部门进行实际应用、开发研究和管理工作的高级专门人才。

信息与计算科学专业简介:

本专业的课程体系和知识结构体现了在扎实的数学基础之上,合理架构信息科学与计算机科学的专业基础理论。通过信息论、科学计算、运筹学等方面的基础知识教育和建立数学模型、数学实践课、专业实习各环节的训练,着重培养学生解决科学计算、软件开发和设计、信息处理与编码等实际问题的能力,培养能胜任信息处理、科学与工程计算部门工作的高级专门人才。

数理基础科学专业简介:

该专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。

② 与数学有关的专业

1、数理基础科学专业

数理基础科学专业主要培养能从事数学、物理等基础科学教学和科研的有发展潜力的优秀人才,尤其是在数学、物理上具有创新的能力的人才,同时也为对数理基础要求高的其它学科培养有良好的数理基础的新型人才。

2、数学教育专业

培养掌握数学教育的基本理论、基本知识和基本技能,具有初步数学教学研究能力和应用能力的中小学数学教师。主要专业课程包含数学分析续论、高等代数、复变函数论、常微分方程、初等数论、近世代数、中学数学方法论等。

3、应用数学

应用数学专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

4、计算数学

计算数学是由数学、物理学、计算机科学、运筹学与控制科学等学科交叉渗透而形成的一个理科专业。计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程 组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法等理论问题。

5、统计学专业

统计学主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化分析、总结,做出推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。应用的范围十分广泛。

③ 数学类都有什么专业谢谢

1、数学分析

数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。

2、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

3、解析几何

解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。

严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。

4、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

5、实变函数论

实变函数论19世纪末20世纪初形成的数学分支。起源于古典分析,主要研究对象是自变量(包括多变量)取实数值的函数,研究的问题包括函数的连续性、可微性、可积性、收敛性等方面的基本理论,是微积分的深入和发展。

因为它不仅研究微积分中的函数,而且还研究更为一般的函数,并且得到了较微积分中相应理论更为深刻、更为一般从而应用更为广泛的结论,所以实变函数论是现代分析数学各个分支的基础。

④ 数学类的专业具体有哪些

数学类主要有三个专业,数学专业,数学与应用数学专业,信息与计算科学专业

数学内专业:主要容就是研究纯粹的数学。
数学与应用数学
:主要学习数学和应用数学的基础理论、科学研究和教学能力。
信息与计算科学
:培养具有良好的数学知识,解决实际问题及开发软件等方面的高级专门人才。

⑤ 数学相关专业有哪些。

数学与应用数学师范专业是以数学也基础,在大三时再进步学习教育学心理学方面知识,为培养数学教师打下一定的教师素养。当然数学与应用数学专业不一定非要考本专业的。只要你有兴趣有毅力,当然可以跨专业报考。数学专业可以报考金融学、工程管理、国际经济贸易等研究生。金融学需要高等概率知识,对数学要求比较高,中央财经大学的金融学值得考虑。工程管理也是不错的选择,譬如中国矿业大学工程管理是考数一的,对学数学专业的很有利。国际经济贸易推荐人大。其实数学本专业的也可以考应用数学研究生,因为有很多学校应用数学专业有金融方向密码学等方向,能学好数学就能前程似锦。

⑥ 数学专业包括什么

1、数学分析

数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。

2、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

3、解析几何

解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。

严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。

4、抽象代数

抽象代数(Abstract algebra)
又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

5、实变函数论

实变函数论19世纪末20世纪初形成的数学分支。起源于古典分析,主要研究对象是自变量(包括多变量)取实数值的函数,研究的问题包括函数的连续性、可微性、可积性、收敛性等方面的基本理论,是微积分的深入和发展。

因为它不仅研究微积分中的函数,而且还研究更为一般的函数,并且得到了较微积分中相应理论更为深刻、更为一般从而应用更为广泛的结论,所以实变函数论是现代分析数学各个分支的基础。

⑦ 数学专业有哪些课程

你现在是高中生吧,那么我先推荐你看两本书
1.《数学分析》
这是数学系的基础课程回答,非常重要.有的学校叫做《微积分》或《高等数学》,相对《数学分析》来说比较简单.难的一般都叫做《数学分析》.
有很多版本了,随便挑一本看看就可以了.当然如果想学好的话,还是要看名校用的教材,如
《数学分析教程》-高等教育出版社(分上下册)

2.《线形代数》
这也是数学系的基础课程,非常重要.有的学校叫做《高等代数》也是相对《线性代数》来说比较简单,一般叫《线形代数>的比较难一些.

《线形代数》-李尚志 编著-高等教育出版社

此外,还有一些课程,有
《初等数论>,《解析几何》(这两门课程也可以看一看)
(以下不推荐提前看)
《实变函数》(很难),《复变函数》,《近世代数》(很难),《微分几何》,《常微分方程》, 《偏微分方程》,《拓扑学》,《概率论》,《数理统计》,《运筹学》,《数值分析》,《数值代数》等等众多课程

⑧ 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

网络—数学分析

网络—高等代数

网络—复变函数论

网络—抽象代数

网络—近世代数

⑨ 数学好的人最适合学什么专业有用的专业

对高中生而言,全能型的学生并不多,毕竟高中的课程真的很难,不同的科目侧重点不一样,比如语文注重文字方面的能力、数学就是逻辑及理解能力、历史就是记忆力。在高中,你没有选择的余地,无论喜欢与否,你都得去学习,但是在大学就不一样了,你可以扬长避短,选择自己擅长并且感兴趣的专业,建议数学成绩好的同学可选择以下几个专业,不要埋没了自己才华!



统计学专业

统计学是应用数学的一个分支,因此与数学息息相关,在大学期间,统计学专业的主干学科就就包括数学。

随着数字化进程的不断加快,人们越来越多地希望能够从大量的数据中总结出一些经验规律从而为后面的决策提供一些依据。因此统计学的就业面很广,各行各业的统计师、分析师、大数据分析师都可以胜任,另外统计学专业生在报考公务员时也有优势。


信息与计算科学专业

在信息时代下,该专业的毕业生不应该为找工作发愁,更多的考虑应该是:如何挑选一个好工作?

信息与计算科学专业的就业范畴虽然不大,但需求量却很大,主要集中在IT企业里,主要从事计算机软件开发、信息安全与网络安全等。工资待遇高,工作环境好,基本上都是资本雄厚的大企业。近几年,国内各大知名IT企业都在“提前预约”名校里信息与计算科学专业的学生。

这个专业真的是一个王牌专业,但不建议每个人都选择,毕竟要想学好它,首先需要具备良好的数学基础,在此基础上,还要熟练的使用计算机,这样才能在行业里立足。

热点内容
渭南教育 发布:2025-08-05 15:55:51 浏览:384
什么是内审员 发布:2025-08-05 15:30:50 浏览:755
校园自助打印机怎么用 发布:2025-08-05 15:13:52 浏览:950
傲慢的近义词是什么 发布:2025-08-05 15:10:22 浏览:631
2015年师德师风计划 发布:2025-08-05 14:13:14 浏览:764
大学物理试卷及答案 发布:2025-08-05 13:39:51 浏览:75
诫子书教学设计 发布:2025-08-05 12:52:28 浏览:797
在机场的英语 发布:2025-08-05 12:18:42 浏览:561
数学2017全国卷文科 发布:2025-08-05 11:25:28 浏览:147
2017年教师师德总结 发布:2025-08-05 11:19:05 浏览:765