小学五年级数学竞赛题
A. 五年级小学数学竟赛题
设隔x分钟发一辆车.小宇12分钟走的路等于电车12-x分钟走的路,小宇4分钟走的路等于电车x-4分钟走的路,所以12-x=3(x-4),x=6.起点站和终点站隔6分钟发一辆电车.
B. 小学五年级数学竞赛题
设小正方形边长X,则2X+4=28,X=12,阴影面积=三角形ABC面积-三角形BCD面积=12*28/2-12*12/2=96
C. 小学五年级趣味数学题及答案(30道)
1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
答:把两根香同时点起来,第一支香两头点着,另一支香只烧一头,等第一支香烧完的同时(这是烧完总长度的3/4),把第二支香另一头点燃,另一头从燃起到熄灭的时间就是15分!
2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄.请问三个女儿的年龄分别是多少?为什么?
答:三女的年龄应该是2、2、9.因为只有一个孩子黑头发,即只有她长大了,其他两个还是幼年时期即小于3岁,头发为淡色.再结合经理的年龄应该至少大于25.
3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29.可是当初他们三个人一共付出$30那么还有$1呢?
答:一共付出的30元包括27元(25元给老板+小弟贪污2元)和每人退回1元(共3元),拿27和2元相加纯属混淆视听.
4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着.两位盲人不小心将八对袜了混在一起.他们每人怎样才能取回黑袜和白袜各两对呢?
答:每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对.
5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶.如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
答:把鸟的飞行距离换算成时间计算.设洛杉矶和和纽约之间的距离为a,两辆火车相遇的时间为a/(15+20)=a/25,鸟的飞行速度为30,则鸟的飞行距离为a/25*30=6/5a.
6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
答:一个罐子放一个红球,另一个罐子放49个红球和50个蓝球,概率接近75%.
这是所能达到的最大概率了.
实际上,只要一个罐子放1.对于每个戴黑的人来说,他能看见N-1顶黑帽 ,并由此假定自己为 白.但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了.所以第N次关灯就有N个人打自己.
12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
答:无论内外,小圆转两圈.小圆、大圆经历的距离相等.
13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
答:39瓶,从第2瓶开始,相当于1元买2瓶.
D. 小学五年级数学奥赛题及答案
、(1)A、1991+199.1+19.91+1.991=1991+199+19.+1+(0.1+0.91+0.991)=2212.001。
B、1995+1996+1997+1998+1999+2000 +2001+2002+2003+2004=19995。
(2)设想:1、同时参加语文、数学两科竞赛的最多有23人,同时参加语文、英语两科竞赛的最多有5人,只参加英语竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。2、同时参加语文、英语两科竞赛的最多有20人,同时参加语文、数学两科竞赛的最多有8人,只参加数学竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。其它设想也会得出最多有28人的答案。
(3)五个是连续自然数的最小合数为24、25、26、27、28,和最小是130。
(4)火车从上桥到离桥需要(1200+300)÷20=75秒钟。
(5)连续n个偶数之和 应为2+4+6+8+ ……=n×(n+1)
则2+4+6+8+ ……+1000=500×(500+1)=250500。
(6)沿圆形轨道飞行了2×(6400+343)×3.14×10≈ 420000千米.
2、居民区A 。
街道 _____________s_点为奶站________________
。居民区B
3、 如图:中间空出的小正方形边长为5厘米,长方形板的宽为
6厘米,长方形板的面积是66平方厘米。
20米
31.5米
4、如上右图,把三条道路平移至菜地边上,则用于种菜的面积就是长为31.5米,宽为20米的长方形面积,是630平方米。
5、汽船顺中流而下速度为440÷4=110(里),则汽船在静水中的速度为110-45=65(里),汽船从沿岸返回速度为65-25=40(里),从沿岸返回原处需440÷40=11小时。
6、解法1、由题意知每6个和尚要用6个饭碗,3个菜碗,2个汤碗,即用11个碗,则55个碗是11的5倍,共有和尚6×5=30个。解法2、每一个和尚要用一个饭碗、二分之一个菜碗,三分之一个汤碗,即共用116个碗,共有和尚55÷116=30个。
7.解法1、240只羊吃草6天=牧场中原有的和6天新长出的草吃=1只羊吃1440天的草,210只羊吃草8天=牧场中原有的和8天新长出的草吃=1只羊吃1680天的草,两者之差是2天新长出的草=1只羊吃240天的草,1天新长出的草=1只羊吃120天的草;牧场中原有的草=1只羊吃144天的草—6天新长出的草(1只羊吃72天的草)=1只羊吃720天的草,18天要吃掉牧场中原有的+18天新长出的草=1只羊吃720天的草+18×1只羊吃120天的草=1只羊吃2880天的草,要用2880÷18=160只羊。160只羊18天即可把牧场中原有的和新长出的草吃完。解法2、每天新长出的草=120只羊可当天吃完,也就是说不管吃草天数多长,专用120只羊可吃掉每天新长出的草,则18天中要吃掉牧场中原有的草要用的羊数+120只羊(当天吃掉新长出的草)就是答案,
牧场中原有的草=1只羊吃720天的草=40只羊吃18天的草, 要用40+120=160只羊
18天即可把牧场中原有的和新长出的草吃完。解法3、本题也可用三元一次方程组求解。设:牧场中原有的草为a和新长出的草为b,c只羊18天即可把牧场中原有的和新长出的草吃完。则有a+6b=240×6 (1)式; a+8b=210×8 (2)式 a+18b=c×18 (3)式可解出c=160只羊。
8、本月水费=15×0.8+10×0.8×2=28元。
9、要用大树为0.28×20×50000000÷(3.14×10×10×2000)≈446棵=0.004万棵,毁灭0.0004平方公里的森林。使用一次性筷子毁灭森林、污染环境,造成生态灾难。我们应当拒绝使用一次性筷子,保护森林、保护生态环境,建议使用消毒竹筷替代一次性筷子。
10、(1)题中的数据可制成条形、折线、扇形统计图均可;(2)城市垃圾的数量年年增加,说明了我国经济社会高速发展,人民生活水平年年提高;(3)我国每年都有这么多的垃圾 ,1)选择填埋,一次性处理;2)应该变废为宝,建立垃圾综合分检处理厂,分类分检回收利用各种有用的工业材料,制造化肥等,保护生态环境。
11、 (1)图形的面积90平方厘米。
(2) 解1:如图半圆面积减掉三角形面积=2个半片叶面积
=3.5625平方厘米。
5 则四叶阴影面积=
12 8 13.5625×4=14.25平方厘米
10 解2:四叶阴影面积=4个半圆面积减掉正形面积
=39.25—25=14.25平方厘米
12、据题意知:三个班分别为(3个、3个、8个节目)的情况共有3种;(3个、4个、7个节目)的情况共有6种;(3个、5个、6个节目)的情况共有6种;(4个、4个、6个节目)的情况共有3种;(4个、5个、5个节目)的情况共有3种。这三个班演出节目数的不同情况共有3+6+6+3+3=21种。
13、最终能获得5个正方形,边长分别是15厘米、6厘米、6厘米、3厘米、3厘米
E. 小学五年级数学奥林匹克竞赛题
增加的面抄积是一个小正方形(边长2分米)和两个小长方形(宽是2分米,长是原正方形的边长)
则:
20-2*2=16分米——两个长方形面积和
16/2=8分米——一个长方形面积
8/2=4分米——长方形的长(即原正方形的边长)
4*4=16平方分米
F. 小学五年级数学竞赛
凑合点儿……我懒得P图了。
见图,2,3为奇点,即有奇数条线经过它,1,4为偶点。
你上网搜一下“七桥问题“就知道,一张图有两个奇点,要一笔画就必须从一个奇点开始,从另一个结束。
(鉴于你的认知,我就用浅显点的可能性解决。不过……你确定这是小学五年级的题目么……)
好了,接下来进入正题。
3有着五条线与它相连,即从3开始,有五条路可以走,但由于有箭头限制,只有三种行驶方式
同样的,从2开始行驶,由于箭头,只能向1行驶,有两种方式到1
从1有两种方式到3
从3有两种方式到4
从4有两种方式到2
那么从3开始,2结束,有3*2*2*2*2=48种方式
由于这个图形是中心对称的,所以从2到3和从3到2都有48种方式。
因此一共是96种方式。