当前位置:首页 » 语数英语 » 现代世界中的数学

现代世界中的数学

发布时间: 2021-08-03 05:07:16

1. 当今世界十大数学猜想是什么

1、几何尺规作图问题

这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题

1.化圆为方-求作一正方形使其面积等於一已知圆;

2.三等分任意角;

3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

4.做正十七边形。

以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

2、蜂窝猜想

四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。

3、孪生素数猜想

1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。孪生素数猜想至今仍未解决,但一般人都认为是正确的。

4、费马最后定理

在三百六十多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn

的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理)。

费马声称当n>2时,就找不到满足

xn +yn = zn

的整数解,例如:方程式

x3 +y3 = z3

就无法找到整数解。

始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快。

不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

5、四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

6、哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

2. ‘现代全部数学分支’有哪些

希尔伯特的23个问题
希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1. 连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2. 算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大网络全书》数学卷指出,数学相容性问题尚未解决。 3. 两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4. 两点间以直线为距离最短线问题 此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大网络全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的 这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性 1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0 ,1,和任意代数无理数β证明了αβ 的超越性。 8.素数问题 包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律 该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10. 丢番图方程的可解性 能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。 11. 系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。 12. 将阿贝尔域上的克罗克定理推广到任意的代数有理域上去 这一问题只有一些零星的结果,离彻底解决还相差很远。 13. 不可能用只有两个变数的函数解一般的七次方程 七次方程 的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。 14. 证明某类完备函数系的有限性 这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。 15. 舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。 16. 代数曲线和代数曲线面的拓扑问题 这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论 的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。 17. 半正定形式的平方和表示 一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。 18. 用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。 19. 正则变分问题的解是否一定解析 对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。 20. 一般边值问题 这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。 21. 具有给定单值群的线性微分方程解的存在性证明 已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。 22. 由自守函数构成的解析函数的单值化 它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。 23. 变分法的进一步发展出 这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。 这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。赞同12

3. 世界现代三大数学难题

美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。“千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。 “千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。八:几何尺规作图问题 这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。十:四色猜想 1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。这是十大的

4. 目前世界上比较出名的数学家有哪些

1.国际著复名数学大师,沃尔夫数学制奖得主,陈省身
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚
3.仅次于哥德尔的逻辑数学大师,王浩
4.著名数学家力学家,美国科学院院士,林家翘
5.我国泛函分析领域研究先驱者,曾远荣
6.我国最早提倡应用数学与计算数学的学者,赵访熊
7.著名数学家,数学教育家,吴大任
8.著名数学家,北大教授,庄圻泰
9.著名数学家,数学教育家,四川大学校长,柯召
10.中央研究院院士,首批学部委员,许宝騄
11.中科院院士,原北大数学系主任,段学复
12.我国拓扑学的奠基人 江泽涵

5. 现代数学发展简史

中国数学发展简史 - 现代数学开端
近代数学的开端主要集中在公元1911年~1949年这一时期。

到了19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。

从1847年,以容闳为代表的第一批学生出国后,形成了一个出国留学的高潮。当时出国留学人数每年要达到数千人之多,他们学成回国后,在中国形成了一支不可忽视的现代科学队伍。

早期出国留学的人中,学数学的人不多,其中做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。

这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。

科研上,1949年以前共发表652篇论文,尽管数量不多,范围也仅限于纯数学方面,但是其水平却不低于世界上的同行们。要知道,就是这点微薄的成果还是在克服了政治、经济等多方面难以想象的困难下取得的。

教育上,建立了正规的课程设置,数学的学时多于文科,对教科书也进行了更新。到1932年为止,中国国内各大学已有一支约155人的数学教师队伍,可以开5至10门以上的专业课。

学术交流上,1935年7月成立“中国数学会”,创办《中国数学会学报》和《数学杂志》。1932年至1936年召开的第9、10次国际数学会议,中国均有人参加。这时,应邀到华讲学的各国数学家也纷至沓来,给过去闭关自守的数学领域,带来了现代的气息。

中国数学发展简史 - 建国后的发展
1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。

解放后的18年间,发表论文的篇数占解放前总篇数的3倍多,其中不少论文不但填补了中国过去的空白,有的还达到了世界先进水平。

正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落。在数学的园地里,除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。

当10年政治灾难过去之后,人们抬头一看,别的国家数学研究早已是高峰迭起,要想追上又需花费不少力气。

中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究……

尽管中国目前在世界数学的赛场上已处落后地位,然而,路遥识马力,今后鹿死谁手,仍然是个“x”。

6. 当代闻名世界的数学大师

Green 格林(有很多姓绿的人,反正都很牛)
S.Lie 李 (创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)Gauss 高斯(有些人不需要说明,Gauss就是一个)
Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他)
Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton 牛顿(名字带牛,实在是牛)
Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace 拉普拉斯(这人的东西太多了,到处都有)
Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)
Maxwell 麦克斯韦(电磁学中的Maxwell方程组)
Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether 诺特(最最伟大的女数学家,抽象代数之母)
Kepler 开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel 波莱尔(学过数学分析和实分析都知道此人)
Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan 拉曼奴阳(天资异禀,死于思乡病)
Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder 赫尔得(Holder不等式,L-p空间里的那个)
Poisson 泊松(概率中的Poisson过程,也是纯数学家)
Nikodym 发音很难的说(有著名的Ladon-Nikodym定理)
H.Hopf 霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者)
Baire 贝尔(著名的Baire纲)
Haar 哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)
Kronecker 克罗内克(牛人,迫害Cantor至疯人院)
E.Laudau 朗道(巨富的数学家,解析数论超牛)
Markov 马尔可夫(Markov过程)
Wronski 朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo 策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche 儒契(在复变中有Rouche定理Rouche函数)
Taylor 泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个)
Urysohn 乌里松(在拓扑中有著名的Urysohn定理)Frechet 发音巨难的说,泛函中的Frechet空间
Picard 皮卡(大小Picard定理,心高气敖,很没有人缘)
Schauder 肖德尔(泛函中有Schauder基Schauder不动点定理)
Poincare 彭加莱(数学界的莎士比亚)Peano 皮亚诺(有Peano公理,和数学归纳法有关系)Zorn 佐恩(Zorn引理,看起来显然的东西都用这个证明)

7. 世界近现代著名的数学家

Green 格林(有很多姓绿的人,反正都很牛)
S.Lie 李 (创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)Gauss 高斯(有些人不需要说明,Gauss就是一个)
Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他)
Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton 牛顿(名字带牛,实在是牛)
Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace 拉普拉斯(这人的东西太多了,到处都有)
Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)
Maxwell 麦克斯韦(电磁学中的Maxwell方程组)
Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether 诺特(最最伟大的女数学家,抽象代数之母)
Kepler 开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel 波莱尔(学过数学分析和实分析都知道此人)
Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan 拉曼奴阳(天资异禀,死于思乡病)
Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder 赫尔得(Holder不等式,L-p空间里的那个)
Poisson 泊松(概率中的Poisson过程,也是纯数学家)
Nikodym 发音很难的说(有著名的Ladon-Nikodym定理)
H.Hopf 霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者)
Baire 贝尔(著名的Baire纲)
Haar 哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)
Kronecker 克罗内克(牛人,迫害Cantor至疯人院)
E.Laudau 朗道(巨富的数学家,解析数论超牛)
Markov 马尔可夫(Markov过程)
Wronski 朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo 策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche 儒契(在复变中有Rouche定理Rouche函数)
Taylor 泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个)
Urysohn 乌里松(在拓扑中有著名的Urysohn定理)Frechet 发音巨难的说,泛函中的Frechet空间
Picard 皮卡(大小Picard定理,心高气敖,很没有人缘)
Schauder 肖德尔(泛函中有Schauder基Schauder不动点定理)
Poincare 彭加莱(数学界的莎士比亚)Peano 皮亚诺(有Peano公理,和数学归纳法有关系)Zorn 佐恩(Zorn引理,看起来显然的东西都用这个证明)

热点内容
晋商历史 发布:2025-07-19 00:08:49 浏览:421
安大历史考研 发布:2025-07-19 00:02:57 浏览:382
教师帮扶学生记录 发布:2025-07-18 20:01:06 浏览:677
运动鞋哪些好 发布:2025-07-18 18:41:48 浏览:456
师生迷情八 发布:2025-07-18 11:58:43 浏览:478
三字经教学视频 发布:2025-07-18 11:46:47 浏览:45
希腊的历史 发布:2025-07-18 10:33:00 浏览:654
人体中的数学 发布:2025-07-18 07:53:58 浏览:951
一级建造师机电教学视频 发布:2025-07-18 07:50:21 浏览:528
班主任工作计划小学四年级 发布:2025-07-18 05:17:52 浏览:912