当前位置:首页 » 语数英语 » 博弈论的数学

博弈论的数学

发布时间: 2021-08-04 06:56:26

① 博弈论,数学

比较倾向于经济学科,纳什凭此获得诺贝尔经济学奖

② 博奕论和数学的关系!

博弈论其实原来是属于数学的一个分支,只不过它在经济学中的应用更为人所见。博弈论的内奠基人纳什是一个容纯数学家,他在1951年给出了纳什博弈均衡的定义,并给出了纳什均衡存在性的证明。纳什均衡存在性是非合作博弈论的基础。从数学原创性及证明的难度来看,这个定理不是太难,只是数学中的不动点定理的应用,但它们成为博弈论的最根本的基础,使得博弈论成为经济学中最重要的分析工具之一,在经济学中有着广泛的应用,它可以用来研究经济人之间相互影响的策略选择问题。

http://bbs.kaoyanmeng.com/read.php?tid=7101

③ 博弈论需要什么样的数学功底可以弄明白

我是数学专业博弈论方向的研究生。要用到泛函分析、凸分析和多目标规划。不过只是用的基本知识,博弈论用的数学知识都很简单。

④ 数学学者回答~什么是博弈论

弈论又被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈要素

(1)局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。

(2)策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。

(3)得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。

(4)对于博弈参与者来说,存在着一博弈结果

(5)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。

纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人仍采取b*,而局中人A却采取另一种策略a,那么局中人A的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。

这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A)和策略b*(属于策略集B)称之为均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。

对于非零和博弈也有如下定义:一对策略a*(属于策略集A)和策略b*(属于策略集B)称为非零和博弈的均衡偶,对任一策略a(属于策略集A)和策略b(属于策略集B),总有:对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对(a*,b*)。

有了上述定义,就立即得到纳什定理:
任何具有有限纯策略的二人博弈至少有一个均衡偶。这一均衡偶就称为纳什均衡点。

纳什定理的严格证明要用到不动点理论,不动点理论是经济均衡研究的主要工具。通俗地说,寻找均衡点的存在性等价于找到博弈的不动点。

纳什均衡点概念提供了一种非常重要的分析手段,使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。

但纳什均衡点定义只局限于任何局中人不想单方面变换策略,而忽视了其他局中人改变策略的可能性,因此,在很多情况下,纳什均衡点的结论缺乏说服力,研究者们形象地称之为“天真可爱的纳什均衡点”。

塞尔顿(R·Selten)在多个均衡中剔除一些按照一定规则不合理的均衡点,从而形成了两个均衡的精炼概念:子博弈完全均衡和颤抖的手完美均衡。

博弈的类型

(1)合作博弈——研究人们达成合作时如何分配合作得到的收益,即收益分配问题。

(2)非合作博弈——研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。

(3)完全信息不完全信息博弈:参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完全信息;反之,则称为不完全信息。

(4)静态博弈和动态博弈

静态博弈:指参与者同时采取行动,或者尽管有先后顺序,但后行动者不知道先行动者的策略。
动态博弈:指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。

财产分配问题和夏普里值(Shapley value)

考虑这样一个合作博弈:a、b、c、投票决定如何分配100万,他们分别拥有50%、40%、10%的权力,规则规定,当超过50%的票认可了某种方案时才能通过。那么如何分配才是合理的呢?按票力分配,a50万、b40万、c10万c向a提出:a70万、b0、c30万b向a提出:a80万、b20万、c0……

权力指数:每个决策者在决策时的权力体现在他在形成的获胜联盟中的“关键加入者”的个数,这个“关键加入者”的个数就被称为权利指数。

夏普里值:在各种可能的联盟次序下,参与者对联盟的边际贡献之和除以各种可能的联盟组合。

次序 abc acb bac bca cab cba
关键加入者 a c a c a b

由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6
所以a,b,c应分别获得100万的2/3,1/6,1/6。

⑤ 博弈论涉及数学知识吗

文科有文科的学法,理科有理科的学法。
博弈论谁都可以学,关键是怎么学、学多深的问题。
文科生可以只了解一些博弈论的概念和一些经典的结论即可,比如纳什均衡、囚徒困境、完全信息博弈、非完全信息博弈等,可以从一些具体的生动的例子中来学,大可不必看那些冷冰冰的公式推导和太过于形式化的表达。
要问博弈论涉及不涉及数学,答案是显然的:不仅涉及,而且可以涉及很高深的数学。2005年诺贝尔经济学将得主之一罗伯特·奥曼就是数学出身的,他研究的很多东西抽象地很,甚至还找不到应用。博弈论发展到现在,一些物理学的方法、概念也引进来了,比如说量子博弈,借用了量子物理学的东西,形成了独特的范式。
你学这个当然没必要学这么深,毕竟你是文科生,还是选修课。但你可以从博弈论发展历史的角度,深入进去,了解一些理论的创立背景以及创立者的相关情况,还是蛮有意思的,比如我刚才提到的罗伯特·奥曼,还有纳什(电影美丽心灵的主角),还有冯·诺依曼(计算机的先驱)等等。了解了这些人,你也了解了博弈论。
至于学习博弈论有什么好处,这跟你学的深度和广度有关。你深入进去,你会发现研究问题的一个新视角,可能会对你看其他问题大有启发。你学得浅,可能就不会用博弈的这种思想来考虑问题,但也许对你也有所启发。比如说,三国演义中的权谋斗智,就充满了博弈的思想,有兴趣你可以试着用博弈论来解释。
就这些吧,希望可以引起你学习的兴趣,或者能给你提供一个方向。

⑥ 博弈论和数学专业

博弈论由于主要研究社会(尤其是人类行为)问题,其思维方式偏向社会科学,故归为经济学分支,但博弈论的研究方式仍是数学为主,统计和概率应用较多。

⑦ 如何用数学来表达复杂的博弈论关系

博弈论的数学模型

作者: 竺可桢学院01混合班

王大方 何霈 邹铭

摘要

博弈论现在得到了广泛的应用,涉及到人的决策问题都可以用博弈论的模型加以解释。本文首先用数学的方法表述实际生活中的博弈行为,并导出一般情况下的博弈的结果,进而讨论一些不同的外部约束条件对博弈过程的影响。我们用经济学中的垄断竞争现象作为博弈问题的一个实例,讨论生产者在不同状态下的决策,进而分析双方共谋的动机和可能性。

(一)基本博弈模型的建立

一, 博弈行为的表述

博弈的标准式包括:

1. 1. 博弈的参与者。

2. 2. 每一个参与者可供选择的战略集。

3. 3. 针对所有参与者可能选择的战略组合,每一个参与者获得的利益在n人博弈中,
用Si为参与者i的可以选择战略空间,其中任意一个特定的纯战略为si,其中任意特定的纯战略为si,si∈Si,

n元函数ui(s1,s2,……sn), 当n个博弈者的决策为s1,s2,……sn时,表示第I各参与者的收益函数。

二, 博弈的解

当博弈进入一个稳定状态时,参与者选择的战略必然是针对其他参与者既定战略的 最优反应,在此状态下没有人愿意单独背离当前的局势。这个局势叫纳什均衡:
在n个参与者标准式博弈,G={ S1,S2,……Sn;u1,u2,……un}中,若战略组合{s1*,s2*,……sn*}满足对每一个参与者i,si*是针对{
s1*,s2*,……si-1*,si+1*……sn*}的最优反应战略,,目标战略组合{s1*,s2*,……sn*}为该博弈的纳什均衡。即:ui {
s1*,s2*,……si-1*,si*,si+1*……sn*}≥ui {
s1*,s2*,……si-1*,si,si+1*……sn*},对一切si∈Si均成立。

纳什于1950年证明在任何有限个参与者,且每个参与者可选择的纯战略为有限个的博弈中,均存在纳什均衡。(包括混合战略)混合战略指认某种概率分布来取一个战略空间中的战略,在本文中不加讨论。

在一般情况中,纳什证明保证了我们的均衡分析有意义。

三, 博弈实例:单阶段博弈古诺竞争

在古诺竞争中,少数厂商通过改变产量来控制价格,以使他们的收益最大化。

我们作如下假设:

1. 1. 厂商生产的商品是相同的,消费者没有对某家厂商的偏好。

2. 2. 市场上价格与供给量的函数为p=a-bQ,且供给增加不会导致过剩,而仅仅使价格降

低,即厂商可以将生产的产品全部售出。

3. 3. 厂商都是理性的,即面对既定的情况都做出决策使自己利益最大化。

4. 4. 信息是完全的,每个厂商都知道其他厂商时理性的,且每个厂商知道别人是理性的

这一事实为所有参与者的共识。

(二)博弈模型的求解与讨论

为了简单起见,我们从一家企业的情况做起:

只有一家企业时,目标收益函数u=Q(a-bQ)

针对max u 的解为Q0=a/2b,u0=a2/4b

当有两家企业时,设产量分别为Q1,Q2,则

p=a-b(Q1+Q2)

u1(Q1,Q2)=p*Q1=Q[a-b(Q1+Q2)]

u2(Q1,Q2)=p*Q2=Q[a-b(Q1+Q2)]

纳什均衡点Q1*,Q2*为方程组

?u1/ ?Q1 =0 (1)

?u?Q

2/2=0 (2) 的解。

整理,得到

2bQ1+bQ2=a (3)

bQ1+2bQ2=a (4)

解得 Q1*=Q2*=a/3b,对应的u1=u2=a2/9b

纳什均衡点是一个极值点,一旦达到该点时双方都没有率先改变的动机。

下面我们讨论纳什均衡点的孤立性,即在对方初始决策不在纳什均衡时,双方能否通过理性的利益最大化策略使博弈形势变化至纳什均衡点。

(1)式表示厂商1的最优函数,在给定对方产量Q时它根据(1)来使自己收益最大, 由

(3)式, 厂商最优函数为Q1=(a-bQ2)/2b同样(2)时表示厂商(2)的最优函数,由(4)式,厂商2的最优函数为Q2=(a-bQ1)/2b

这是两条直线,如图,交点E为纳什均衡点。

AB为厂商1的最优函数,CD为厂商2的最优函数,

当双方的初始选择点为A,即Q1=0,Q2=a/b,A在厂商1最优函数上,故厂商1不会改变,但厂商2针对Q1=0的最有点为C,于是双方的决策点转移到C,在C点厂商1会调整自己的产量时双方决策点到F,然厂商2又会调整策略到CD上,以此类推,最后将到达E点,在第一象限的任何初始选择点,按以上分析双方都能经过一系列调整到达E点。

在完全信息的假设下,上面这一系列的调整过程在任何一方决策之前就能被预测到,任何一个厂商都回绝的任何一个异于E点的决策都不是在给定条件下最好的选择,于是双方会不约而同的按E点做出产量决策。但是当

Q1=Q2=1/2 * a/2b (5) 时双方才能获得最大收益。

Q1=Q2=1/2 * a2/4b (6)

这一方面说明纳什均衡点并不是一个最好的决策点,另一方面也说明与独家垄断比起来两家厂商的竞争提高了社会效应,社会总产量从a/2b增加到了2/3 *
a/b=2a/3b。

当厂商数增加至n家时,模型变为

n p=a-b*∑i=1Qi (7)

ui=p*Qi,i=1,2,……n (8)

i/ i =0 I=1,2……n (9)

由归纳法可证明(9)可化为方程组(以矩阵形式表示) ?u?Q

?2??1

?1??:

?1?1....21:11??....11?2....1??:::?....12??
1?Q1??1?????Q2???1??:??:?????:???:??Q????n?= a/b *?1? (1)

由线性代数分析可知,该方程组有唯一非零解

Q1*=Q2*=…Qn*=a/(n+1)b,

ui*=a2/(n+1)2b

社会总产量为na/(n+1)b。

这说明h厂商垄断竞争也必有纳什均衡点,同样方法可证明纳什均衡点不是孤立的,于是理智的各方均会按均衡点做产量决策。

另外n越大,竞争越彻底,社会总产量越高。当n很大时,总产量趋于a/b,此时价格p为0,这时价格p为0,此时这个模型不适用。因为在n较小,(一般小于5)时垄断厂商才有能力通过自己的产量来控制价格。

厂商们的整体最好选择是Q1*=Q2*=……Qn*==a/2nb,
分别能获得收益,a2/4nb。显然n越大,厂商们理性博弈的结果和他们的最好选择点间的差距越大。

(三)多阶段博弈与共谋

以上可以看出,作为博弈者的厂商很有必要共谋限制产量,但最好的选择点是不稳定的,率先违约的一方都能获取额外利润,因此需要一些条件来约束双方的行为。另外共谋只有在长期过程中才有效益,双方需要不断检查是否已经违约,并决定自己是否要违约,每次这样的过程就是上文的单阶段博弈。

这里的信息条件为每企业在n阶段可以观察的前n-1阶段博弈结果。规则为一旦对方违约,自己就违约,且永不守约,这为双方所共识。

我们新引入一个时间贴现因子v,0<v<1,用来计算以后阶段收益的现值,如已知下一阶段收益为R,则折合到当阶段相当于收益为vR。一开始双方约定共同生产a/4b,每阶段收益为a2/8b,一直守约,双方的收益为

a2(1+v+v2+……)/8b=a2/[8(1-v)b] (10)

对先违约的一方,根据对方a2/4b的产量,由(3)和(4),它的最优产量为3a/8b,该阶段收益为

[a-b(3/8+1/4)a/b]*3/8*a/b=9a2/64b (11)

此后双方都明白共谋破裂,均按a/3b的均衡产量生产。设一方在N阶段违约,则收益2为a(1+v+v2+……vN-1)/8b+9vN/64*a2/b+vN+1*a2/[(1-v)ab]
(12)

(12)-(10),得 [vN/64-vN+1/72(1-v)]*a2/b

解得 当v<0.529时,先违约方有利,且违约越早, 额外利润最高。此时共谋很难达成。

(四)共谋与监督问题的深入

长期博弈中,人们需要一套更为复杂的机制来维持一种非纳什均衡,以维持利益的最大化。和之前的那个模型不同,在每一次作单阶段博弈时,人们不仅仅通过前一次的结果,而是通过一种长期的经验来对对手做出判断。这里涉及一个信誉问题,他是一个标证不确定因素的概率,这样的模型使得我们可以根据对手不同的策略作出最有利于自己的决断。合作的结果一般出现在离博弈结束较远的阶段,而在最后几个阶段的博弈中博弈者往往只注重当前的利益。

我们提出的维护声誉的策略是“投桃报李”,即下一次作的决策与对手上一次的决策相同,

将上文中的垄断竞争模型修改如下:

1. 1. 理性博弈者B知道博弈者A有P的概率选择投桃报李的策略,有(1-P)的概率选

择其他策略(此时A即成为一个理性的人)。A也知道B时理性的。

2. 2. 在每个阶段N, 双方都同时作决策,都知道前N-1次彼此的决策结果。一旦A未使

用“投桃报李”的原则而理性地做出利益最大化决策,则B就把A当作理性的,这一点也成为AB双方的共识。此后的博弈退化到上文讨论的一般完全信息理性博弈,得到的解为纳什均衡点。

单阶段博弈

对于单阶段博弈,由上文中(5)式的讨论,合作意味着厂商生产a/4b的产量,否则厂商将按利润最大化原则生产。首先违约的厂商将生产3a/8b,获利9a2/64b,而后所有厂商均会按a/3b生产,获利a2/9b。(为了描述方便,这里将常系数a2/b略去,下同)双方面对的策略-收益矩阵为

A \ B 合作 不合作

合作 (1/8,1/8) (5/48,5/36)

不合作 (5/36,5/48) (1/9,1/9)

两阶段博弈

在两阶段博弈中,理性的B在第二阶段将选择不合作。在第一阶段开始时他要推测A的情况,A有P的概率为投桃报李类型的,于是,若B在第一阶段选择合作,则B对第一阶段预期收益为
P*1/8+(1-P)*5/48 (12)

B对第二阶段的预期收益为P*5/36+(1-P)*1/9 (13)

(因为若A不是投桃报李型的,在第一阶段结束时B就会知道这一事实,双方在第二回合便选择纳什均衡点。)

若B在第一阶段选择不合作,则B生产a/3b,(这里不合作并非生产3a/8b,因为此时B不知道A是否为理性的博弈者,经验算我们发现a/3b的产量决策比3a/8b的决策有更高的期望受益)。
于是B对第一阶段的期望收益为 5P/36+(1-P)/9 ; (14)

B对第二阶段的期望收益为 1/9 ; (15) (此事无论A是否理性,双方都不会合作)。

当P≥52%时,讨论 式 (12)+(13) ―[(14)+(15)] ≥0

所以在两阶段博弈中,只要估计A会有52%的可能投桃报李,B就会选择合作。

考虑模型中信息假设,A也完全明白B以上的想法,于是A也至少有装扮“投桃报李”的动机。

三阶段博弈

现在扩展成三阶段的情况,只要B在第一阶段合作,后来的两个阶段又退化至两阶段博弈的结果。由上文的分析, B对三个阶段的期望收益为

u1= P/8+5/48(1-P)

u2=P/8+(1-P)/9

u3=5P/36+(1-P)/9

总期望收益u1+ u2+ u3= 47/144 + P/16 (16)

如果B在第一阶段不合作,则无论A是否为投桃报李型的在第二阶段都不会合作。而理性的B在第三阶段肯定会不合作。

如果此时B在第二阶段继续选择不合作,则B从这种背离中获得的各阶段期望收益为 u1=5P/36+(1-P)/9 u2=1/9 u3=1/9

总期望收益 u1+ u2+ u3= 1/3+P/36 (17)

比较(16),(17),得,当P≥20%时,式(17)> 式 (16) , B就没有动机在第一阶段背离。

如果B在第一阶段不合作,在第二阶段合作,第三阶段不合作,则他的各阶段期望收益为

u1= 5P/36+(1-P)/9 u2=5/48 u3=5P/36+(1-P)/9

总期望收益为P/18+47/144 恒小于(16)式,此时B也没有动机在第一阶段背离。
综上,只要A有20%的可能为投桃报李型的,B在前两阶段就没有背离合作的动机。

对于A,一旦他在第一阶段就背离合作,那么自第二阶段起A为理性的就成为博弈双方的共识,此时他的期望收益为5/36+1/9+1/9=13/36

而A如果始终合作,其均衡收益为1/8+1/8+1/9=13/36

所以在三阶段时A是否要背离合作无所谓,不过这只是由于本问题数据特殊性的巧合。

多阶段的扩展

从上面的三个阶段扩展就可以看出,随着阶段数的增多,每个博弈者更多的会考虑长久的收益情况,而非眼前。这意味着之需要一个很小的信誉概率P,就有可能约束对方不发生背叛的行为。

当共有T阶段博弈时,我们可以用归纳法证明理性的双方在从1到T-2阶段选择合作,而在T-1和T阶段按照上文讨论的两回合博弈行动。假设任何t(t<T)博弈中上述假设均成立。
如果A在t<T-1的任意阶段不合作,则他是理性的便在以后的阶段成为共识,他在t期的收益为5/36,以后均为1/9,总收益为 (t-1)/8 + 5/36
+ (T-t)/9

而A的均衡收益为从1到T-2阶段每一阶段均为1/8,T-1的收益为5/36,最后一期为1/9。显然提前违约的收益小于均衡收益。

对于B, 由两阶段博弈可知, B没有在前T-2阶段合作,T-1阶段不合作的动机,B只可能再t≤T-3的阶段背离合作。 一旦B在t阶段背离合作,
则无论投桃报李的还是理性的A都将在t+1阶段不合作,
于是在前t+1阶段B无法确认A是否为理性,从t+2阶段起双方的博弈等同于一个T-(t+1)阶段的博弈。

由归纳假设,这后一部分博弈中双方会合作到T-2阶段,然后按照上文的两阶段博弈进行。B的总收益为

u= 1/8 * (t-1) + 5/36 + 5/48+[T-2-(t+2)+1]*1/8 + [P/8 +(1-P)*5/48 +5P/36 +
(1-P)/9] 这小于B从1到T的均衡收益(T-2)/8+ [P/8+ 5(1-P)/48 + 5P/48 + (1-P)/9]

所以B也没有只背离一次的动机。

更为一般的情况是在前(T-3)次博弈中B有多次的背离与合作,则按以上方法多次使用归纳法,可以发现获得的期望收益更少。其根本原因是率先背约者无法判断对方的真正类型,所以无法保证自己的利益能够最大化,而一旦约定破裂后修复的成本很高,使得背信弃义的额外收益比双方合作来的少。
( 5/36+5/48)<2*1/8 ) 这样的模型就使得共谋更有约束力。

小结与进一步的研究

本文主要为静态博弈问题建立了数学模型,并用他分析了一个实例:垄断市场上的古诺竞争和共谋。在静态博弈中,数学上的极大值就是博弈的均衡解。理性决策迫使人们的行为向利益极大值点移动,而信息问题是理性决策最重要的前提条件,可以说不同的信息条件可以推导出不同的理性决策。本文讨论的是最完美的信息假设:完全信息。它不仅指双方彼此了解对方的情况,而且彼此知道对方了解自己情况这一事实,以此类推,等等,最后形成了一个无穷的递归链。最后讨论的投桃报李模型不是完全信息的,但是它也有一套为双方所共知的评判标准来约束双方的决策。总之,本文讨论的模型是双方都知道规则的情况下进行的博弈,这是一个对实际博弈相当理想化的简化。在这样的简化下,如何妥善的处理无穷信息递归链,是个有待进一步研究的问题。而就垄断这个经济问题本身而言,本模型最大的理想化就是价格与供给量成一次函数关系,进一步可将这个函数关系拟合得更符合实际,由此还可推导出不同的收益函数和多个纳什均衡点,做出进一步分析。

参考文献

罗伯特.吉本斯: 《博弈论基础, A PRIMER IN GAME THEORY》

约瑟夫. 斯蒂格利茨: 《经济学》
张涛 方城等, 基于累积期望差异评价策略的重复博弈仿真研究 《系统工程.》2002,20(3).-87-91

霍沛军 双寡头的经济捕鱼策略 《数学的实践与认识》2002,32(2).-201-205

薛伟贤, 冯宗宪, 陈爱娟 寡头市场的博弈分析 《系统工程理论与实践》, 2002 Vol.22 No.11

⑧ 数学和博弈论

数学系本来科主要课程:自
1.分析类
数学分析(微积分)基础一
实分析(实变函数)
复分析(复变函数)
泛函分析
2.代数类
高等代数 基础二
近世代数
3.几何类
解析几何 基础三
微分几何
4.概率统计类
概率论
数理统计
多元统计分析
5.计算类
数值分析(计算方法)
还有一些应用,比如
运筹学(含博弈论)
小波分析
组合数学
数学模型

博弈论是运筹学的一个分支,广泛应用于经济学、管理学、社会学、政治学、军事科学等领域

热点内容
小学二年级语文下册第一单元测试卷 发布:2025-07-15 05:31:34 浏览:668
共生物流平台 发布:2025-07-15 05:10:48 浏览:869
流瑜伽教学视频 发布:2025-07-15 04:56:12 浏览:340
尿路感染怎么办 发布:2025-07-15 04:25:38 浏览:39
四年级语文上册教学反思 发布:2025-07-15 03:56:32 浏览:173
三年级上册语文第二单元测试题 发布:2025-07-15 03:48:10 浏览:826
爱尔兰咖啡怎么做 发布:2025-07-15 03:14:45 浏览:753
2015师德师风讲话 发布:2025-07-15 03:05:10 浏览:597
abc教育资源网 发布:2025-07-15 03:03:47 浏览:233
加强师德师风建设的实施方案 发布:2025-07-15 02:44:17 浏览:479