圣经与数学
A. 被称为数学的《圣经》的著作是哪本书
九章算术
《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一专种。该书内容十分丰属富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。
B. 数学不好的人都是上帝派来的天使什么意思
一、天使象征着服侍上帝(安拉)的灵。上帝(安拉)差遣它们来地球帮助需要拯救的人、传达上帝(安拉)的意旨,是上帝(安拉)在地上的代言人。
真正含义是:天使是“纯净体”,不可附身于任何生物身上,唯一只可附身在无原罪体(无灵魂的生物)上;天使是纯“善”的化身,所以绝对不会容忍“恶”的存在,但也不算人类的朋友。据旧约《圣经》所述,天使会按照上帝的命令,对有罪的人进行苛刻严厉的惩罚。
二、简介:
天使(英文Angel,中文音译安琪儿,意译天仙,源自于希腊文angelos 使者)本义指上帝的使者,来自天上的使者。大多数宗教信仰中都有类似概念。基督徒一般译为天使;穆斯林有时译为天仙。代表圣洁、良善,正直,上帝(安拉)旨意的传达者、为上帝(安拉)服役的灵、受上帝(安拉)差遣保护信众不被恶魔侵扰的保护者。将神给人的讯息带进人间的桥梁。人间监察者、人们行为(包括隐秘)的忠实的记录者,对抗神国敌人的战士、神国内拥有特殊职业的人民。
C. 数学是一切科学的基础 出自哪里
这句话是达芬奇的名言。
达·芬奇认为,在科学中,凡是用不上数学的地方,凡是和数学没有联系的地方,都是不可靠的,数学是一切科学的基础。他画的各种机械平面图、动植物图,他所从事的每一项工作,没有哪一项不得益于数学的准确性。
达·芬奇在哥伦布之前,就算出了地球半径为6000余千米。他还发现了立体几何中正六面体、球体和圆柱之间的面积规律。
(3)圣经与数学扩展阅读:
达芬奇的科学思想:
最初,人们学习科学知识也只是学习像《圣经》一样的亚里士多德理论,只相信文字记载。
达·芬奇反对经院哲学家们把过去的教义和言论作为知识基础,他鼓励人们向大自然学习,到自然界中寻求知识和真理。他认为知识起源于实践,应该从实践出发,通过实践去探索科学的奥秘。他说“理论脱离实践是最大的不幸”,“实践应以好的理论为基础”。
达·芬奇提出并掌握了这种先进的科学方法,采用这种科学方法去进行科学研究,在自然科学方面作出了巨大的贡献。他提出的这一方法,后来得到了伽利略的发展,并由英国哲学家培根从理论上加以总结,成为近代自然科学最基本的研究方法。
达·芬奇坚信科学,他对宗教感到厌恶,抨击天主教那些掌权的为“一个贩卖欺骗与谎言者”。他说:“真理只有一个,他不是在宗教之中,而是在科学之中。”达·芬奇的实验工作方法为后来哥白尼、伽利略、开普勒、牛顿、爱因斯坦等人的发明创造开辟了新的道路。
D. 阿拉伯人在宗教和数学上分别有什么成就
这个我认为,阿拉伯民族应该是战斗民族,当然今天的战斗民族称号被俄罗斯日夺走了,
但是我认为阿拉伯民族依旧是战斗民族,当然他这个战斗民族不是说综合国力有多强大,而是说这个民族的战斗精神和战斗意志无与伦比,
他们的民族给自己的定位就是真主的皮鞭,古兰经就是战斗圣经,阿拉伯人的地下组织是全世界地下斗争的开山鼻祖,苏联以前的地下党以我国解放前地下党组织活动都借鉴了阿拉伯人先进经验。基地IS什么的确实有过人之处,
最早的重力投石机又称回回炮,青铜火炮都是阿拉伯人,在前人的基础上加以改进发明的。
重力投石机借鉴了古希扭力投石机,用配重取代了牛筋马尾,重力投石机使得弹道学研究成为可能,后来又改进了蒙古人的广口青铜火铳,制造了最早的身管火炮。
数学上,除了继承了埃及的也吸收了印度经典,像阿拉伯数字本身是印度发明的但却是阿拉伯人将其发扬光大和传播了出去,除此之外阿拉伯人也发展了初级的一些弹道学,以及用于航海的几何学
E. 中国第一部数学著作是什么
《九章算术》。
《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。
最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。
(5)圣经与数学扩展阅读
《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是:
第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题。
第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;
第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。
第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。
F. 我觉得现代人只有数学让我推崇。古代人的圣经,易经最让我推崇。
这是问题吗?还是在陈述什么?
G. 有哪些数学著作
科普类:
1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编著,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊著、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因著,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 著,李宏魁 译
9 数学珍宝:历史文献精选 著 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 几何的有名定理 作者:(日)矢野健太郎著
12 什么是数学 作者:(美)R·柯,H·罗宾 著,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 著, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名著译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 著,代钦 译 丛书名: 通俗数学名著译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 著
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 著,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个著名数学问题
25 数学中的智巧
26 可怕的科学《经典数学》系列 北京少年儿童出版社 尼克.阿诺德【英】等
传记类:
1 《数字情种》(爱多士传) 作者:保罗.霍夫曼
2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4 《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5 《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界著名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特
专业:
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:艾萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原著, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
H. 有哪几本数学书是对数学史上影响重大的,这几本书叫什么名字
1、《几何原本》(Elements of Euclid)
欧几里德(Euclid,前300-前275?)古希腊数学家。
本书的印刷量仅次于《圣经》,是数学史上第一本成系统的著作,也是第一本译成中文的西文名著。原名《欧几里德几何学》,明朝徐光启译时改为《几何原本》。全书13卷,从5条公设和5条公理出发,构造了几何的一种演绎体系,这种不假于实体世界,仅由一组公理实施逻辑推理而证明出定理的方法,是人类思想的一大进步。此书从写作的时代一直流传至今,对人类活动起着持续的重大影响,直到19世纪非欧几里德几何出现以前,一直是几何推理、定理和方法的主要来源。
2、《算术研究》(Disquisitiones Arithmetical,1798)
高斯(C.F.Gauss,1774-1855),德国数学家。
“数学之王”的称号可以说是对高斯极其恰当的赞辞。他与阿基米德、牛顿并列为历史上最伟大的数学家。他的名言“数学,科学的皇后;算术,数学的皇后”,贴切地表达了他对于数学在科学中的关键作用的观点。他24岁时发表了这本书,这是数学史上最出色的成果之一,系统而广泛地阐述了数论里有影响的概念和方法。由此推倒了18世界数学的理论和方法,以革新的数论开辟了通往19世纪中叶分析学的严格化道路。高斯立论极端谨慎,有3个原则:“少些;但要成熟 ”:“不留下进一步要做的事情”。
3、《几何基础》(The Fuadations of Geometry,1854)
黎曼(B.Riemann,1826-1866),德国数学家。
黎曼是19世纪最有创造力的数学家之一。虽然他没有活到40岁,著作也不多,但几乎每篇文章都开创了一个新的领域。本篇是黎曼在格丁根大学任大学讲师时的就职演讲,是数学史上最著名的演讲之一,题为“关于构成几何基础的假设”。在演讲中黎曼独立提出了非欧几里德几何,即“黎曼几何”,又称椭圆几何。他的这一关于空间几何的独具胆识的思想,对近代理论物理学发生深远的影响,成为爱因斯坦相对论的几何基础。
4、《集合一般理论的基础》(Foundations of a General Theory of Aggregates,1883)
康托尔(G.Cantor,1845-1918),德国数学家。
康托尔创立的集合论,是19世纪最伟大的成就之一。本书是康托尔研究集合论的专著。他通过建立处理数学中无限的基本技巧而极大地推动了分析和逻辑的发展,凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新的思想模式。
5、《几何基础》(The Fuadations of Geometry,1899)
希耳伯特(D.Hilbert,1862-1943),德国数学家。
希耳伯特是整个一代国际数学界的巨人。由高高斯、狄利克雷和黎曼于19世纪开创的生气勃勃的数学传统在20世纪的头30年中主要由于希耳伯特而更为显赫著名。在本书中,希耳伯特用几何学的例子来阐述公理体系的集合理论的处理方法,它标志着几何学公理化处理的转折点。希耳伯特的名言:“我必须知道,我必将知道”,总结了他献身数学并以毕生业务使之发展到新水平的激情。
6、《测度的一般理论和概率论》(General Theoey of Measure and Probability Theory,1929)
柯尔莫哥洛夫(A.N.Kolmogorov,1903-1993),苏联数学家。
柯尔莫哥洛夫是20世纪最有影响的苏联数学家。他对许多数学分支贡献了创造性的一般理论。此篇论文是研究概率的名作,在随后的50年中被人们作为概率论的完全公理而接受。在1937年又出版《概率论的解析方法》一书,阐述了无后效的随机过程理论的原理,标志着概论论发展的一个新时期。
7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)
哥德尔(K.Godel,1906-1978),美籍奥地利数学家。
哥德尔在本篇中给出了著名的哥德尔证明,其内容是,要任何一个严格的数学系统中,必定有用本系统内的公理无法证明其成立或不成立的命题,因此,不能说算术的基本公理不会出现矛盾。这个证明成了20世纪数学的标志,至今仍有影响和争论。它结束了近一个世纪来数学家们为建立能为全部数学提供严密基础公理的企图。
8、《数学原理》(Elements Mathematique I-XXXIX,1939-)
本书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团。在本世纪30年代由法国的一群年轻数学家结合而成他们把人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典著作,成为许多研究工作的出发点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨著究竟何时算完,谁也说不清。但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无二的。
I. 著名的数学著作有哪些
1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。自张邱建以後,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。它是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。
但其美中不足的是,在四元玉鉴中,对於一些重要的问题如求解高次联立方程组的消去法等解说过於简略,并且对於书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致於自朱世杰之後,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。
3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。
《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。
4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。
该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
5、《孙子算经》:《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。
卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
J. 为什么说上帝使用了美丽的数学来创造这个世界
科学和科学家是上帝的产物,上帝没有创造宗教,但上帝创造了科学和科学家,一个真正的科学家是无法否认上帝的存在的,因为上帝创造的一切都是科学的、有规律的、有原理的,绝不是一团乱麻。走科学的道路,就是走上帝的道路。谁离上帝最近?科学家离上帝最近。