七上数学
❶ 人教版七年级上册数学概念
一、有理数
0既不是正数,也不是负数。
正整数、负整数、0统称为整数。
整数可以看作分母为1的分数.正整数、0负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
原点、正方向、单位长度是数周三要素。
只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.
数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、 一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
有理数的减法法则:
减去一个数,等于加上这个数的相反数。
有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的
数,都得0。
求n个相同因数的积的运算,叫做乘方。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;
0的任何次正整数次幂都是0。
有理数的混合运算顺序:
1先乘方,再乘除,最后加减;
2同级运算,从左到右进行;
3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。
用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。
四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字。
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
二、整式
单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
三、一元一次方程
方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程。
等式两边加(或减)同一个数(或式子),结果仍相等。
等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项。
卖价=进价+利润
利润=卖价-进价
利润率=利润÷进价×100%
卖价=进价×(1+利润率)
利润=进价×利润率
四、图形
直线
(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线
(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
线段
(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。
线段的中点:把一条线段分成两条相等线段的点。
角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边。
角度制及换算:
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:
1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;
角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等。
❷ 七年级上册数学知识重点
|第一篇 概念篇
1.整数和分数统称为有理数.
2.相反数:a的相反数是 -a
3.绝对值:|a|=
4.倒数:a的倒数 (a≠0)
5.乘方:相同因数积的运算叫乘方,负数的奇次方为负,偶次方为正;正数的任何次方为正;0的任何次方为0.
6.有理数运算:运算法则、运算顺序、运算律.
7.科学记数法:a×10n(1≤a<1).近似数,精确度,有效数字.
8.用基本的运算符号(指加、减、乘、除、乘方及今后要学的开方)把数或表示数的字母连接而成的式子叫做代数式.
9.数字与字母的积,这样的式子叫做单项式.
(1)单独的一个数或一个字母也是单项式.
(2)单项式中的数字因数叫做这个单项式的系数.
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数.
10.几个单项式的和叫做多项式.
(1)在多项式中,每个单项式叫做多项式的项,其中,不含字母的项叫做常数项.
(2)一般地,多项式里次数最高的项的次数,就是这个多项式的次数.
11.单项式和多项式统称整式.
12.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.
13.把多项式中的同类项合并成一项,叫做合并同类项.
14.移项法则:把等式一边的某项变号后移到另一边叫移项.
15.互为余角:如果两个角的和为90°,那么这两个角互为余角.如直角三角形ABC中,
∠A=90°,∠B=46°,∠C=44°,那么∠B与∠C就互为余角.
16.互为补角:如果两个角的和为180°,那么这两个角互为补角.
17.∠α的余角是:90°-∠α,∠β的补角是:180°-β
18.互为余角的性质:同角或等角的余角相等.互为补角的性质:同角或等角的补角相等.
第二篇 习题篇
核心学习系列(一)
1.|2|的相反数是_____,-(-2)的相反数是 , 的倒数是 .
2.绝对值等于3的数有____个,它们是________;绝对值不大于3的整数有____个,它们是________.
3. 在代数式: , , , , 中,单项式的个数为_________.如果 是关于 、 的一个单项式,且系数是9,次数是4,那么多项式 是_____________次式.
4. 的相反数是( )
A.8 B. C. D.-
5.单项式 的系数和次数分别是 ( )
A. B. C. D.
6. ;
7. ;
8.解方程:3(x-2)+1=x-5(2x-1).
9. 一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?
10.出租车司机小李某天下午的营运全在东西走向的人民大街上进行,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下: +15,-2,+5,-l,+10,-3,-2,+12,+4,-9,+6.
(1)将小李下午出发地记为O,他将最后一名乘客送抵目的地时,小李距下午出车时的出发点有多远?
(2)若汽车耗油量为O.35升/千米,这天下午小李共耗油多少升?
附加题
11. 计算:
核心学习系列(二)
1. 在有理数中,最大的负整数是 ,最小的正整数是 ,最小的非负整数是 ,最大的非正整数是 .
2.若 .
用“>”或“<”号填空:-3 -4;-(-4) - ; .
3. 一个关于b的二次三项式的二次项系数是-2,一次项系数是-0.5,常数项是3,则这个多项式是_____________.单项式 , , 的和是___________
4.下列各数中,是负数的是 ( )
A. B. C. | -9 | D. .
5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )
A.0.1(精确到0.1) B.0.05(精确到百分位)
C.0.05(保留两个有效数字) D.0.0502(精确到0.0001)
6. .
7. .
8.先化简,再求值
9.小明家粉刷房间,雇佣5个工人,干了10天才完成;用了某种涂料150升,费用为4800元;粉刷面积是150平方米. 最后结算工钱时,有以下三种方案:
方案一:按工算,每个工30元(1个工人干一天是一个工);
方案二:按涂料费用算,涂料费用的30%作为工钱;
方案三:按粉刷面积算,每平方米付工钱12元.
请你帮小明出主意,应选择哪种方案付钱最合算(最省)?(通过计算说明)
10.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值(单位:g)
0 1 3 6
袋 数 1 4 3 4 5 3
(1)这批样品的平均质量比标准质量多还是少?多或少几克?
(2)若每袋标准质量为150克,则抽样检测的总质量是多少?
附加题
11.(1)已知 ,求 的值. (2) 已知 ,求 的值.
核心学习系列(三)
1. 化简下列各式:
(1)-(+2)= ;(2)-(-15)= ; (3)+[-(-2)]= .
2.已知 ,则 _______________.如果有理数a、b满足|a|=5,|b|=4,且a<b,那么a= ,b= .
3.化简:(1) =________; (2) =________;(3) =_______ (4) =__________;(5) =__________.
4.已知 ,则下列等式不成立的是( )
A. B. C. D.
5.小新准备用如图8的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上图案,使做成后三组对面的图案相同,那么画上图案后正确的是( )
6. .
7. 已知 , ,求: .
8.解方程: .
9.某工厂第一车间有 人,第二车间比第一车间人数的 少30人,那么
(1)两个车间共有多少人?
(2)如果从第二车间调出10人到第一车间,调动后,第一车间的人数比第二车间多多少人?
10.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.
(1)设上海厂运往汉口 台,用 表示总运费 (百元).
(2)若从上海厂运往汉口2台,总运费是多少元?
附加题
11. 观察下列等式(等式中的“!”是一种数学运算符号),1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,……试计算 的值.
核心学习系列(四)
1.- 的相反数的相反数是________;相反数是它本身的数是________;如果一个数的绝对值等于它本身,这样的数是_________.
2.已知 和 互为相反数且 ,则 _______, ________.
3. 的指数为______底数为____; 的指数为_____底数为_____.
4.下列各组中的两项,属于同类项的是( )
A. 与 B. 与 C. 与 D. 与
5.下列说法正确的是( )
A. 两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BP
C. 若AP=BP, 则P是线段AB的中点 D. 两点之间的线段叫做者两点之间的距离
6. .
7. .
8.解方程: .
9.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.
两地区与该农机租赁公司商定的每天的租赁价格见下表:
每台甲型收割机的租金 每台乙型收割机的租金
A地区 1800元 1600元
B地区 1600元 1200元
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),写出用x的式子表示y的关系式.
(2)分别求出当 等于28、29、30时租金y的值.
10.某商店积压了 件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案:先将价格提升到原来的 倍,再作三次降价处理,第一次降价 ,第二次降价 ,第三次再降价 ,三次降价处理销售情况如下:
降价次数 一 二 三
销售件数
一抢而光
(1)第三次降价后的价格占原来价格的百分比为多少?
(2)该商品按新销售方案销售,相比原价售完,哪一种方案更盈利?
附加题
11.已知a、b都为有理数,满足什么条件时,a+b与a-b互为相反数.
核心学习系列(五)
1.计算: = .(结果用科学记数法表示).圆周率=3.141592653…,如果取近似数3.142,它精确到 位,有效数字是 .
2.如果n为正整数,则(-1)2n =______, (-1) 2n+1=______.
3.要使多项式 不含三次项及一次项,则 _________ ________.
4.若a是有理数,则2a与3a的大小关系是( ).
A. 2a>3a B. 2a<3a C. 2a=3a D. 不能确定.
5. 2007年10月31日17时25分,我国的首颗绕月人造卫星嫦娥一号第三次近地点变轨,卫星远地点高度由12万余公里提高到37万余公里,进入114小时地月转移轨道. 其中数据“37万余公里”用科学记数法表示正确的是 ( )
A. 余公里 B. 余公里 C. 余公里 D. 余公里
6.(23 -14 -38 )×(-48).
7.已知多项式A减去 得 ,求多项式A.
8.如果方程 的解与方程 的解相同,求式子 的值.
9.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的速度.
10.公园门票价格规定如下表:
购票张数 1~50张 51~100张 100张以上
每张票的价格 13元 11元 9元
某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人。经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?
附加题
11.实数a、b、c在数轴上的位置如图所示,化简|a|-|a+b|+|c-a|+|b-c|.
核心学习系列(六)
1.化简: ____________, =_______.
2.已知 是同类项,则 等于 ________.
3.在方程3x- =5中,用含x的代数式表示y为:y= ,当x=3时,y= .
4. 在代数式 、 、 、 、 中,单项式的个数是( )
A.1 B.2 C.3 D.
5.足球比赛的计分规则:胜一场得3分,平一场得1分,负一场得0分。一个队打14场比赛,负5场共得19分,那么这个队胜了( )场.
(A)3 (B)4 (C)5 (D)6
6. .
7.若|x|=2,求下式的值:3x2-〔7x2-2(x2-3x)-2x〕.
8.解方程: .
9.某车间22名工人生产螺母和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
10.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
附加题
11. 比大小:①12____21;②23____32;③34____43;④45____54;⑤56____65……
(1)猜想nn+1和(n+1)n的大小关系;
(2)比较:20072008______20082007.
核心学习系列(七)
1. 与-15互为相反数,则 的值是________________.如果-(-3 )=6,则 的值是________________.
2. 和 互为相反数且 ,则 _______, _______.
3.一天中有8.64×104秒,一年如果按365天计算,一年中有 _________秒.(用科学记数法表示结果保留两个有效数字)
4.以下说法正确的是 ( )
A.是正数的数一定是负数 B.°C表示没有温度
C. 小华的体重增长了-2 kg表示小华的体重减少2 kg D. 多项式 的次数是3
5.计算正确的是 ( )
A. B.
C. D.
6. .
7.求代数式 的值,其中
8.已知代数式 的值是-2,求 的值.
9.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻数的和是-640,这四个数中最大数与最小数的差是多少?
10.商场共出售甲、乙两种商品共50件,该50件商品总进价108000元,其中商品甲每件进价1800元,出售后获利200元;商品乙每件进价2400元,出售后获利300元。问该商场出售这50件商品共获利多少元?
附加题
11.方程: .
核心学习系列(八)
1.若 ,则ab的值是 . 若 ,则a一定是_________数.
2.多项式 加上 _________等于 .
3.代数式 的值为2,则代数式 的值为 .
4. 绝对值大于3而小于7的所有整数之和是( ).
(A)30 (B)15 (C)0 (D)20
5.若 是一元一次方程,则 等于( ).
(A)1 (B)2 (C)1或2 (D)任何数
6.-24× .
7.已知 , ,求 .
8.解方程: .
9.某牛奶厂工厂现有鲜奶8吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨;受人员限制,两种加工方式不可同时进行;受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
为此,该厂设计了两种可行方案:
方案一:尽可能多地制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利较多?为什么?
10.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.
附加题
11. 解方程:
│x-1│+│x-5│=4
核心学习系列(九)
1.在代数式 : , , , , , , , , 中,多项式有 ___________个,整式有 _______个.
2.单项式 是5次单项式,则x=________.一个单项式含x,y这两个字母,并且它的系数为 ,次数为4次,试写出这个单项式_________________.
3.在方程① ,② ,③ ,④ ,⑤ ,⑥ 中,是一元一次方程的有_____________________(填序号).
4.解方程 时,去分母正确的是( ).
(A) (B)
(C) (D)
5.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是( )
A.两点之间,线段最短;B.两点确定一条直线;
C.线段只有一个中点; D.两条直线相交,只有一个交点.
6. .
7.已知 ,求: 的值.
8.解方程: .
9.期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?
10. 全球通手机卡收费每分钟0.20元,月租费每月20元;神州行手机卡没有月租费,每分钟0.40元,假如你买了一部手机:
(1)若你估计每月通话时间为75分,你应选择哪种手机收费卡?
(2)若你估计每月通话时间为120分钟,你应选择哪种手机收费卡?
(3)每月通话时间为多少分钟时,全球通和神州行的费用相同?
附加题
11. 甲、乙二人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700米处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400米处,求A、B两地间的距离是多少?
核心学习系列(十)
1.写出一个一元一次方程,使它的解为―23 ,未知数的系数为正整数,方程为___________.
2.若 是一元一次方程,则m=__________.关于 的方程3 +5=0与3 +3 =1的解相同,则 =_________.
3.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件___________元.
4. 若a、b互为相反数,则在①a+b=0 , ② ,③a2=b2 ,④ , ⑤ab=-b2中,必定成立的个数为( ) A.2 B.3 C.4 D.5
5.平面上有任意四点,经过其中两点画一条直线,共可画( )
A.1条直线 B.4条直线 C.6条直线 D.1条或4条或6条直线
6.10- ;
7.先化简,再求值: ,其中 , , ;
8. 解方程: .
9. 某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?
10. A、B两地相距169千米,甲以42千米/时的速度从A驶向B地,出发30分钟后因故障需停车修理,这时,乙车以39千米/时的速度B地向A地驶来。已知甲排除故障用了20分钟,问乙车出发后经过多少时间与甲车相遇?
附加题
11. 有两列正在相向行驶的列车,快车长 米,慢车长 米,轨道是平行的.聪聪比刻正坐在慢车的靠窗位置,一面望着对面的列车,一面看着手表 整列快车驶过窗口的时间正好是 秒钟.也许是无巧不成书吧,聪聪的同学小明此刻正坐在快车上的靠窗位置,一刹那间,他看到了聪聪的人影,小明高兴极了,正想招呼他时,列车早已飞驰而过,不见了聪聪的身影.请问,坐在快车上的小明,看见整列慢车驶过窗口所用的时间是几秒?
核心学习系列(十一)
1.解方程 时,去分母后的方程是 _____________________.
2.如图3所示的是长方体的展开图,若C面在前面,D面在下面,则 面会在上面;若从右面看是面C,而D面在后面,E面在左面,则 面会在上面.(字母朝外)
3.如图4,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是 .
4.下列各组数中,数值相等的是( )
A. B. C. D.
5.从3时15分到3时30分,时针转了( )
A.7.5° B.15° C.90° D.10°
6.-1 [ 8×(-3)]×0-(-5) .
7.化简: .
8.已知方程4x-a=1与方程 +(a+2)=3x+2都是关于x的方程,且这两个方程的解相同,求它们的解.
9. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
10.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:
(1)前8场比赛中,这支球队共胜了多少场?
(2)这支球队打满14场比赛,最高能得多少分?
(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?
附加题
11. 百蛋(外国古题)
两个农民一共带了100只蛋到市场上去出卖。他们两人所卖得的钱是一样的。第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。”问他们俩人各有多少只蛋?
核心学习系列(十二)
1. 的系数是_____________,次数是_____________. 一个关于b的二次三项式的二次项系数是-2,一次项系数是-0.5,常数项是3,则这个多项式是_____________。
2.两个角的比是6∶4,它们的差为36°,则这两个角的关系是__________(填互余或互补);8点半时钟表上时针与分针所组成的角为_________度。
3.拿一个硬币,将其立在桌面上用力一转,它形成的是一个_______体,由此说明________________________________________.
4.如图4,由A测B的方向是( )
A.南偏东30° B.北偏西30° C.南偏东60° D.北偏西60°
5.如图5,∠AOB+∠BOC=90°,∠BOC与∠COD互余,那么∠AOB与∠COD的关系是( )
A.∠AOB>∠COD B.∠AOB=∠COD
C.∠AOB<∠COD D.无法确定
6. 6÷(-2) (-4)× .
7.已知x=y+3,求代数式 (x-y)2- 的值.
8.解方程: .
9.如图8,东西方向的海岸线上有A、B两个观测站,在A地发现它的北偏东30°方向上有一条渔船,同一时刻,在B地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.
10.如图11,AB=6cm,点C是AB的中点,点D是线段AB的六等分点,求CD.
附加题
11. 如图,AB=BC=CD=DE=1cm,那么图中所有线段的长度之和等于_____厘米.
核心系列学习(十三)
1.如图2,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_______条线段,________条射线, ________个小于平角的角.
2.根据下列多面体的平面展开图,填写多面体的名称.
(1)__________, (2)__________, (3)_________.
3.指出图(1)、 图(2) 、图(3)是左边几何体从哪个方向看到的图形。
4. 单项式 的系数和指数分别是( )
A.-π,5 B.-1,6
C.-3π,6 D.-3,7
5. 有理数a,b在数轴上的对应点如图所示,则( ).
A. b<a B. |a|<|b| C. -a>b D. -b<a
6.-9+5×(-6)-(-4)2÷(-8).
7. 为何值时, 是五次二项式?
8.已知 , ,
求多项式 的值.
9.如图12,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.
10.如图15,在正方体ABCD-A1B1C1D1中.
(1)分别写出以点B为端点的线段;
(2)一只蚂蚁要从A点沿表面爬行到顶点B1,怎样爬行路线最短?为什么?
(3)若由点A沿表面爬行到点C1呢?
附加题
11. 如图,O是直线AB上的一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中彼此互补的角共有几对,请写出来.
核心系列学习(十四)
1.计算: ___________________.
2.如图1, , ,则图中相等的锐角有_____对.
3.如图2所示,射线 表示________方向,射线 表示________方向.
4.关于 的方程3 +5=0与3 +3 =1的解相同,则 =( ).
(A)-2 (B)43 (C)2 (D)-43
5. 若 +|n+1|=0,则 的值是( )
A.1 B.-1 C.2 D.-2
6. .
7.化简求值: ,其中 .
8.解方程
9.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
¬(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.
10.如图,已知直线AB和CD相交于O点,∠COE是直角,
OF 平分∠AOE, ∠COF=34°,求∠BOD的度数.
附加题
11.若方程 的解相同,求a的值.
核心系列学习(十五)
1.用一副三角尺,可以作出大于0°而小于180°的角共 个.在一张薄圆饼上切10刀(不重叠切),最多可得到 块小饼.
2.若平面内有 , , 三点,过其中任意两点画直线,最多可以画_________条直线,最少可以画_________条直线.
3.观察下列各正方形图案,每条边上有 个圆点,每个图案中圆点的总数是 .
按此规律推断出 与 的关系式为_____________
4.若一个立体图形从正面看、从左面看都是长方形,从上面看是圆,则这个图形可能( )
A.圆柱 B 球 C 圆锥 D 三棱锥
5.二中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是 ( )
(A)2(30+x)=24-x (B)30+x=2(24-x) (C)30-x=2(24+x) (D)2(30-x)=24+x
6.-14- [2-(-3)2] .
7.先化简,再求值: 2(xy-xy2+3)-(-4xy2+xy-1),其中x=-4,y= .
8.解方程: .
9.如图9,将长方形纸片沿AC对折,使点B落在B′,CF平分
∠B′CE,求∠ACF的度数.
10.如图10是一座简易的工房分别从正面、上面和左面看所看到的图形,你能想象出这座简易工房的样子吗?请把它画出来.
附加题
11. 和尚吃馒头(中国古题)
大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大、小和尚各几人?各吃多少馒头?
❸ 七年级上册数学全部概念
1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。
2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
对顶角相等
2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角
内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。
同旁内角定义
同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。
两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。
【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。
【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。
4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。
必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。
三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。
.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。
(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形。
❹ 初中七年级上册数学公式大全
这个是别人的回答,不知道对不对
七年级的全部数学公式
乘法与因式分解
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
每一级末尾的0不读。
每一级前面的0读。
每一级中间的0,不管有几个零,只读一个。
圆锥是圆柱的1/3。
圆柱是圆锥的3倍。
分子相同,分母越小分数就大。
分母相同,分子越大分数就小。
上面是分子,下面是分母。
相遇问题
相遇路程=速度和相遇时间
相遇时间=相遇路程速度和
速度和=相遇路程相遇时间
利润与折扣问题
利润=售出价-成本
利润率=利润成本100%=(售出价成本-1)100%
涨跌金额=本金涨跌百分比
利息=本金利率时间
税后利息=本金利率时间(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
每份数×份数=总数 总数÷每份数=份数
速度×时间=路程 路程÷速度=时间
路程÷时间=速度 单价×数量=总价
总价÷单价=数量 总价÷数量=单价
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和
和-一个加数=另一个加数 被减数-减数=差
被减数-差=减数 差+减数=被减数
因数×因数=积 积÷一个因数=另一个因数
被除数÷除数=商 被除数÷商=除数
商×除数=被除数
和倍问题
(和+差)÷2=大数 (和-差)÷2=小数
和÷(倍数-1)=小数 小数×倍数=大数
和-小数=大数
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数
小数+差=大数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
利润与折扣问题
利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100%
折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)
加法交换率:a+b=b+a
加法结合率:a+b+c=a+(b+c)