当前位置:首页 » 语数英语 » 基础数学论文

基础数学论文

发布时间: 2021-08-06 00:50:41

⑴ 关于数学论文

数学教学中培养学生创造思维能力
21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后 甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:"你发现了什么?"学生们纷纷发言:"小球旋转形成了一个圆"小球始终绕着中心旋转而不跑到别的地方去。"我还看见好像有无数条线"……¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到"无数条线"则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。

三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学"分数应用题"时,有这么一道习题:"修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工
程还要多少天?"就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。

⑵ 数学论文

数学学习兴趣及其培养
内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。
学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对
数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理
素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用
等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年
龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习
兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教
学环节,贯穿于数学教学的全过程。
关键词:学习兴趣 兴趣 认知
学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经
验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识
经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需
要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。
学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与
愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知
欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时,
这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学
习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。
1.学习兴趣及特点
1.1 学习兴趣
兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着,
兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生
基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需
要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学
习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认
识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。
教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关
部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处
于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习,
使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会
使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。
1.2 兴趣的特点
1.2.1 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对
某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴
趣。学习的兴趣是可以诱发和培养的。
1.2.2 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。
人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是
建立在需要的基础之上的。
1.2.3 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有
情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情
绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。
1.2.4 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支
持、推动和促进作用。(2)为未来活动做准备。
1.2.5 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩
展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。
1.2.6 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可
分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美
感引起的自觉兴趣和潜在兴趣则是持久兴趣。
2 影响兴趣形成与发展的因素
2.1 兴趣与需要的关系
皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因
为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的,
兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需
要的人则更喜欢简单的任务。
2.2 兴趣与年龄的关系
不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴
趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自
的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越
增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。
2.3 兴趣与性格和能力的关系
不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。
当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。
2.4 兴趣与他人、集体及地区的影响有关
学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。
2.5 兴趣与性别的关系
从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学
校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚
至讨厌数学的也是男生多于女生。
3 兴趣的形成过程
儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于
经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的
注意和兴趣。
要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的
具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域
连接起来。
章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不
断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或
新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。
4 兴趣的作用
兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴
趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学
习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。
兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度
具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。
兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌”
于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经
常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来
时,就表现为一种稳定的兴趣的个性倾向性。
5 兴趣的发展规律
5.1 兴趣发展逐步深化
人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平,
它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目
性和广泛性。
乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学
生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、
自发性和坚持性的特点。
志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的
基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。
5.2 直接兴趣与间接兴趣的相互转化
兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴
趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接
兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便
会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学
习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。
5.3 中心兴趣与广泛兴趣的相互促进
中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方
面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。
5.4 好奇心、求知欲、兴趣密切联系,逐步发展
从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三
者又是沿着好奇心—求知欲—兴趣的方向发展的。
好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童
期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时
期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某
事物或活动的兴趣。
5.5 兴趣与努力不可分割
兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣,
也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。
6 激发和培养学生学习数学的兴趣
数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城
一中的高三毕业班学生的调查显示45.4%的学生认为课业负担较重的科目是数学,32.8%
的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣,
是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节,
贯穿于数学教学的全过程。
6.1 要求学生建立积极的心理准备状态
教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一
些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。
6.2 帮助学生形成正确的学习价值观
学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充
分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目
的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学
习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立
科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴
趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定
的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。
6.3 提高教学水平引发学生学习兴趣
6.3.1 设悬激趣
创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量
我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这
时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树
的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知
欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也
得到解决。
6.3.2 实践激趣
数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础
上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生
活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为
了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值,
同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的
兴趣。
6.3.3 竞争激趣
课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足
够的机会,鼓励他们竞争。
6.3.4 操作激趣
感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学
时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容,
使学生的认识由感性的基础上升到理性知识。
6.3.5 评价激趣
教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导,
忌用简单、粗糙的语言挫伤学生的学习知识性:
第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说:
“圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实
践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。”
从而激发学生的学习兴趣。
第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导,
让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功,
产生兴趣。
6.3.6 加强直观,引导动手操作
在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动
态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手
操作能有效地引发学生的学习兴趣。
6.4 建立平等和谐的师生关系
教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的
高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生
心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热
的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心
他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心,
参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更
应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关
系,学生才会亲其师、信其道、学其知,产生兴趣。
6.5 应用现代化教学手段培养学习兴趣
学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。
在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的
理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰
好弥补了这一不足。
随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手
段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的
教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、
立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之
感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。
参考文献:
[1]陈在瑞、路碧澄注。数学教育心理学。北京:中国人民大学出版社,1995。
[2]李洪玉,何一粟著。学习动力。武汉:湖北教育出版社,1999。
[3]李洪玉,何一粟著。学习能力发展心理学。合肥:安徽教育出版社,2004。
[4]刘显国。激发学习兴趣艺术。北京:中国林业出版社,2004。
[5]田中。初中学生性别与数学学习关系的问卷调查分析。数学通报,2000(6)。
[6]徐德雄。高中数学学业负担的调查及对策。中学数学教学参考,1997(3)。

⑶ 数学小论文

如何学写数学小论文
“ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
(1) 写什么
写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。
下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种:
①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;
如:探究大桥的热胀冷缩度
②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;
如:
一台饮水机创造的意想不到的实惠
③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法
如:
分式“家族”中的亲缘探究
如:
纸飞机里的数学
④对自己数学学习的某个章节、或某个内容的体会与反思
如:
“没有条件”的推理
如:
小议“黄金分割”
如:
奇妙的正五角星
(2) 怎样写
① 课题要小而集中,要有针对性;
② 见解要真实、独特,有感而发,富有新意;
③ 要用自己的语言表述自己要表达的内容
(四) 评价数学小论文的标准
什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。
“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。
例子:《容易忽略的答案》

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

⑷ 求一篇数学论文

数学源于生活、根植于生活。数学教学就要从学生的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学生学习数学的兴趣,让学生深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。当我打开一年级的数学课本时,给我的印象好像一本童话书一样漂亮,每一课的内容,都有一个场景故事表现出来,把数学知识融入到了学生非常熟悉的生活中,与学生身边的生活联系较为密切。刚入学的一年级学生,大部分都受到学前教育,在生活中也学到一些与数学有关的生活知识,所以他们对数学并不是一无所知。我在第一单元实际数学教学中,尝试如何将学生已有的生活经验引导学生学习认数,取得了较好的效果。一、培养学生主动学习的愿望,让学生体会到身边有数学数学教学中,要善于引导学生观察生活中的实际问题,感受数学与生活的密切联系。在学习第一单元《快乐的校园》之前,我先带领学生熟悉美丽如画的校园和参与各种课内外活动,让学生体验感受学校生活的丰富多彩,从尔喜欢即将开始的校园生活。教授信息窗2《老鹰捉小鸡》这一课时,我把学生领到操场这个“大课堂”,实地做游戏组织教学活动。通过学生非常熟悉喜爱的“老鹰捉小鸡”的游戏,来学习1—10数的认识。在游戏中让学生数一数“有几个小朋友参加游戏?”“男同学有几人?”“女同学有几人?”等等,在数扎长辫女孩“排第几”的过程中感知数的另一个含义——“序数”。整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到游戏学习中去,“学习”热情很高。学生在不知不觉中圆满完成了整节课的学习任务。这样的数学课堂,让学生深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,使学生对数学逐渐产生亲切感,从而培养学生主动学习的愿望。二、发现生活中的数学问题,借助生活经验,学会探索解决数学问题学生的学前数学知识,生活中的数学常识,经验的建立,是依赖于实际生活实践,是学生看得见,摸得着,听的到的现实。生活中的数学问题具有形象性和启发性,它能唤醒学生已有的生活经验增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维发展。教师要善于挖掘数学内容中的生活画面,让数学贴近生活,在组织学生活动中,引导学生讨论解决数学问题:我在信息窗1《科技小组活动》的教学中,学生在解决红点标示的问题“天上有几架飞机?”时,引导学生去看一看数一数,让学生充分利用情境图中的信息体会1-10各数的意义,再联系生活,广泛选取学生身边生活中非常熟悉的问题,进一步体会数的意义。如“我们的教室有几扇窗?几盏灯?教室门前有几棵树?”“你家里有几口人?你有几只铅笔……”等等。在教学中我注意选择学生身边的感兴趣的事物,提出数学问题,为学生在生活中寻找探索新知识的依托,使学生学会借助生活经验思考探索问题。三、有意识创设活跃的学习氛围和生动有趣的学习情境“好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,安排了很多不同的游戏、故事……在第一单元《快乐的校园-10以内数的认识》中,我带学生到操场上做他们非常熟悉、喜欢的“拔河、老鹰捉小鸡、小小运动会”等等 ,让他们边玩边数数“拔河比赛,左边有几个小朋友?右边呢?运动会上,6号运动员排在第几?第1名是几号运动员?等等……”使学生在活跃的学习氛围和有趣、喜爱的“玩”中学会了1-10各数的认识。四、培养孩子数学的生活实践能力许多孩子在上学前,就会做100以内的加减,数100以内的数甚至更多,但是如果把它们拿到具体的生活中就不是那么尽如人意,一般5岁以后数学的思维能力才开始蒙发,上一年级的学生部分只能机械的数数,但对数的意义就不一定清楚,因此,就要加强数学与生活的联系,让学生在自己的身边熟悉的环境中寻找数。如3个人,1枝铅笔,5朵花等等,在生活中慢慢建立数的概念,认识数的含义。使学生在生活实践中得到锻炼,把数学真正融入现实生活中更好的为生活服务,同时用生活经验更好的为数学学习服务打好了结实的基础。总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

⑸ 初中数学论文4000字

数学书也需要读。读是一种学习方式、学习方法、学习过程,是新理念中与文本的对话过程,是认知的基础,是创造的根本。读可以感受数学,有益于吸纳知识,交流成长,倡导自主的一种有效学习。

关键词:读文本 新理念 对话过程 创造根本 感受感知数学 感悟理解 沟通交流 有益成长 自主学习 有效学习。

今天在新教学理念的实施过程中,学习方法多种多样,但都是殊途同归,都是以获取知识为目的。正所谓“教学有法、学无定法、贵在得法”。其实“读”本身就是一种很好地学习方法。谈到读书,好像是只重视了文科类知识的读、写、念、看、想………,特别是语文教材中的每一课,学生会左一遍右一遍地读呀读。当然,这也是语文学科的突出特点所至。可是,数学课本中的内容,又有谁能达到一遍又一遍地读呢?所以笔者认为“数学书也需要读”。“读书”不只是文科学习的专利,应该是任何学科都需要的过程。

一、读书不仅是一种学习方法,而且也是一种学习过程。

常言道“读书百遍,其意自见”。任何书本上的知识经验都需要读。当学生做每一道应用题时,我们常常是强调了先读题,读题就是意味着审题,只有先审清题意后,才能够去进一步分析解答,所以说:读,不仅仅是一种学习方法,而且也是一种学习过程,也是一种分析、认知、理解的过程。

二、读为创造的根本,是感悟理解的基础。

新教学理念中提出:“读书是一种与文本的对话过程。”这种对话过程也是一种互动的活动过程。通过这种对话互动,来收集信息,感知信息,接纳信息,整理信息。对数学来讲就是接受数感,感知数学,感受生活中的数学,体会和感悟、理解数学知识。如读出“自然数”也是在认识自然数。读出某种法则、意义,也就在理解和认识某种法则意义。

《新课标》还指出:课程本身是一种活动,课程是人的各种自主性活动的总和。学习者通过与活动对象的相互作用而实现自身方面的发展。其实,读书的过程就是人的自主性的发挥,人的自主性的活动总和。学习者通过读书这一活动过程,才能使知识内化,理解;才能进一步去体验、感悟、反思和探究学习。通过读才能与书与编者与生活中的数学沟通;才能与内容交流;才能与同学研讨;才能知因果,断正误,辨关系;才能迁移类推;才能有变式理解。再通过实践体验,才能有再造有创意,或异想天开的假设、推论等可能。所以说读为创造之根本,读为理解之基础。

三、读书可以感受生活,感受身边数学的存在。

学生学习什么?新理念中指出:“学生活的知识,学生存在的本领,学生命的意义”。开放的数学课堂预设引导学生让他们去发现、去观察、去思考、去探究,那就必须先读。书要自己去读,果要自己去摘,圆要自己去画,理要先自己去悟,心要自己用。以读促讲,以读促思,以读带学,以读悟情。让他们自己感受到数学的存在,感受到数学的意义、价值,感受到数学生活和生活中的数学。这样才能体现“把时间还给孩子”;把“能力还给孩子”;“将一切落实到学生的学”。

为让他们读出快乐,对中差生哪怕是读一句话,读一个算式,读一点要求,或读一道题也好,表示教师对他们的尊重,赏识或信任,贴近感情。

不仅如此,新理念在学法指导中着重关注有效学习,我认为数学书也需要读。这也不乏是有效学习中的一部分。

四、读书能知是什么、为什么、怎么样,使自己变聪明,体现自学培养习惯。

新教学理念要“教师转变教的行为”。即教师不要太“聪明”。不要直接教他们“列式子”。要让他们自己去读;自己去想;自己去加、自己去减、自己去数、自己去拼、画、改……。早在1500多年前就有“35只头和94只脚”的问题答案,况且今天抓素质教育;就必须在“自主”上作文章,所以必须让他们自己去读,并且多读、读懂、读明白。

读书不仅仅是读文字,读题,读概念,意义,法则,公式,解释;更重要地是读图,读画面,读关系,读空白……。既要求读原因,又要求读方法、过程和结果,还要读直观,读抽象,读整体和部分,读量与率,读出逻辑与思维……,读出成功感受、体验、快乐,读出收获,价值意义,读出兴趣与拓展。

再是要及时将读到的知识、能力与方法过程加以整理强化,并及时转化为经验,转化为欲望、动力与兴趣。“文本”中大部分是前人总结的经验,不通过读怎么能知道,怎么能感受理解?不只是语文学科课文要读,故事书要读,其实任何学科的书都需要读。“读才能知内容,读才能理解内涵,读才能明白科学的价值应用,读才能使自己更充实”。“书中自有黄金屋”、“书中自有颜如玉”。当你时进感觉到快乐时,就越发想读,愿意读,习惯读。所以读可以磨炼意志,也可以形成习惯。

如人教版《第十一册》P122页“纳税”一节课中,不读就不知道什么是纳税,纳税的意义及特点作用、存在、内涵要求。不读就不会知道数学中的小数、分数、百分数………等好多知识及联系运用。

五、读书有益于自己和他人沟通交流,并在交流中发展成长。

读数学书,仍然也是读者。“有一千个读者,就有一千个哈姆雷特。”正是如此,学生通过读书,对语感、数感、形感的结合,揣摩,推敲,咀嚼,切已体察,展开想象,结合画面,结合数与形的关系,可能会创造出新情境和意境。不同人的读,可能有不同的理解和认识。可能会突发奇想,可能会引发新的创造。所以读书应是最有益的,不仅使自己成长也可能在交流中促进或带动他人的共同成长。

读书作为学生与文本教材之间的一种精神上的相遇,通过两者之间的对话式的相互沟通,达到学生自主和自由发展的目的。读后若能有准备地讲说、探讨、交流,如我是这样想的……, 我这样认为……,我的理解是……, 我的看法……,我的感受……,所以结果从这方面看读,不乏是积极倡导自主学习方式的一种形式,更是一种有效的途径,何不充分利用。

总之,书是要读的,数学书更是要读的。数学是科学的一个分支,也是其它学科的基础。数学源于生活,用于生活,又在身边。语文能一遍又一遍地读,甚至到背诵。而数学的读的确也应该引起大家的重视。读数学虽然不是什么“精神大餐”,但一旦产生了兴趣,那怕是肤浅的发现和猜想,也可能使人生充满挑战,激起希望,也可能会产生创意或奇迹,所以笔者认为数学更需要读。

⑹ 数学论文:数学是什么

数学【shù xué】(希腊语:μαθηματικ?),源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成 mathématiques,可溯至拉丁文的中性复数mathematica,由西塞hjt数学(math)。以前我国古代把数学叫算术,又称算学,最后才改为数学。 数学的意义数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。 数学史基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域,格……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 三维立体结构图编辑本段数学研究的各领域数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与逻辑为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。

⑺ 数学论文

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。

目录

简介名称来源
数学的意义数学史
数学研究的各领域
数学的分类数学的五大分支
数学分支
数学分类
数学的发展史
国外数学名家阿基米德
高斯
牛顿
莱布尼茨
中国古代数学发展史中国古代数学的萌芽
中国古代数学体系的形成
中国古代数学的发展
中国古代数学的繁荣
中西方数学的融合
中国古代著名数学家及其主要贡献刘徽(生于公元250年左右)
祖冲之(公元429年—公元500年)
中国古代其他著名数学家及其主要贡献
以华人数学家命名的研究成果
数学名言
数学中有关的名词
现代数学衍生品简介 名称来源
数学的意义 数学史
数学研究的各领域
数学的分类 数学的五大分支
数学分支
数学分类
数学的发展史
国外数学名家 阿基米德
高斯
牛顿
莱布尼茨
中国古代数学发展史 中国古代数学的萌芽
中国古代数学体系的形成
中国古代数学的发展
中国古代数学的繁荣
中西方数学的融合
中国古代著名数学家及其主要贡献 刘徽(生于公元250年左右)
祖冲之(公元429年—公元500年)
中国古代其他著名数学家及其主要贡献
以华人数学家命名的研究成果数学名言数学中有关的名词现代数学衍生品展开

编辑本段简介
名称来源
数学【shù xué】(■;希腊语:μαθηματικ?)西方源自于古这一词在希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。
编辑本段数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

编辑本段数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及
数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。
编辑本段数学的分类
离散数学 模糊数学
数学的五大分支
1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学
数学分支
1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理
数学分类
符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。
编辑本段数学的发展史
世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”
编辑本段国外数学名家
阿基米德
阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。
高斯
数学天才——高斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。
牛顿
牛顿是英国物理学家和数学家。
在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。一天在树下闲坐,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿最卓越的数学成就是创立了微积分,此外对解析几何与综合几何都有贡献。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的
浩瀚的真理海洋,却还完全是个谜。”
莱布尼茨
戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎网络,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
编辑本段中国古代数学发展史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。

⑻ 数学小论文,2000字以上 急急急

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。
数学分类
符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。
中国古代数学的发展
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理。祖暅应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。

整理一下就好了!!

热点内容
微生物学第三版 发布:2025-07-11 00:14:22 浏览:107
初中数学卷子 发布:2025-07-11 00:11:28 浏览:807
2年级语文上册期中试卷 发布:2025-07-10 23:36:23 浏览:93
活性炭化学式 发布:2025-07-10 16:30:45 浏览:437
怎么双眼皮 发布:2025-07-10 14:11:37 浏览:591
教师师德演讲稿集锦 发布:2025-07-10 13:52:59 浏览:701
英语培训翻译 发布:2025-07-10 10:05:31 浏览:823
2014暑期实践 发布:2025-07-10 09:19:41 浏览:982
老师批改作业的图片 发布:2025-07-10 07:56:40 浏览:819
兰州市教育 发布:2025-07-10 04:28:12 浏览:486