当前位置:首页 » 语数英语 » 世界最难数学题

世界最难数学题

发布时间: 2021-08-06 01:00:24

㈠ 世界上最难的数学题是什么要有题...还有答案的

最难的数学题是证明题“哥德巴赫猜想”。
哥德巴赫猜想(GoldbachConjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。考虑把偶数表示为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。离猜想成立即"1+1"仅一步之遥。

㈡ 世界上最难的数学题

这一很简单。就是用那个九点去那个前面的数就等于那个数,然后加起来就是等于七。

㈢ 请问世界上最简单,最难的数学题分别是什么

你好啊·这个看给什么人做了最容易的有时候是最难的

㈣ 世界上最难的数学题是哪一道

不知你是说给学生的习题还是给数学家的问题...

难度大致上可以用时间来看吧, 下面列出了几个100年以上的重要数学问题.

猜想/定理 证明 提出 注
费马大定理 1994 - 1637 = 357 10万马克等
哥德巴赫猜想 ? - 1742 > 272 希尔伯特23个问题
孪生素数猜想 ? - 1849 > 164 希尔伯特23个问题(部分解决)
黎曼猜想 ? - 1859 > 155 希尔伯特23个问题, 千禧年大奖难题
地图四色定理 1976 - 1852 = 124
庞加莱猜想 2006 - 1904 = 102 千禧年大奖难题

当然时间并不完全代表难度, 还与数学家的投入有密切关系, 而投入的多少与问题的重要性有关, 问题的重要性(以及难度)可以从是否有悬赏(悬赏金额), 是否广泛关注来大致认识.
考虑到近两个世纪地球人口剧增, 近期提出的问题其实也应该相当有难度.

貌似一般认为黎曼猜想是现在未证明的而又最具有深远影响的定理了.

㈤ 世界上最难的数学题!!!

哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。
"X&P
_,S|:Yt}[0
o
o
o
o
o
桌面天下WX
g
ps^b/M
o
o
o
o
桌面天下1G6g
i%H&@^{
o
o
o
o
o
桌面天下4sR&~!g
S;hQ%@?L
o
o
o
o
o
yLOSh0o
o
o
o
o
]%RC
bo'Fz
d9n0桌面天下D#lw7P+XX
?4N
将每个圈用直线连起来,不能用斜线,不能空一个,
线不能交叉。桌面天下?6A3^S#Nn+I
Y
?3r
(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b
H0桌面天下,t|tz
Y*Vvmb
桌面天下
uZS
]@
rI
桌面天下1O&D.x&R$i+Z
8U8ge2MH+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:
6n"S!b
E8K3wZ+]5M0o
.
o
.
*
桌面天下"Zh8C
H`z
.
o
.
o
*}
V
m]/y%y/z6TC0o
.
o
.
o
z0g*Y2@+l
U0.
o
.
o
.
8gS;^&{?t&lk
u0o
.
o
.
o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是:
桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线

㈥ 世界上最难的数学题是什么

哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a)
任何一个n
³
6之偶数,都可以表示成两个奇质数之和。
(b)
任何一个n
³
9之奇数,都可以表示成三个奇质数之和。
这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s
Theorem)
¾
“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为
“1
+
2
”的形式。
在陈景润之前,关於偶数可表示为
s个质数的乘积
与t个质数的乘积之和(简称
“s
+
t
”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了
“9
+
9
”。
1924年,德国的拉特马赫(Rademacher)证明了
“7
+
7
”。
1932年,英国的埃斯特曼(Estermann)证明了
“6
+
6
”。
1937年,意大利的蕾西(Ricei)先后证明了
“5
+
7
”,
“4
+
9
”,
“3
+
15
”和“2
+
366
”。
1938年,苏联的布赫
夕太勃(Byxwrao)证明了
“5
+
5
”。
1940年,苏联的布赫
夕太勃(Byxwrao)证明了
“4
+
4
”。
1948年,匈牙利的瑞尼(Renyi)证明了
“1
+
c
”,其中c是一很大的自然
数。
1956年,中国的王元证明了
“3
+
4
”。
1957年,中国的王元先后证明了
“3
+
3
”和
“2
+
3
”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了
“1
+
5
”,
中国的王元证明了
“1
+
4
”。
1965年,苏联的布赫
夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及
意大利的朋比利(Bombieri)证明了
“1
+
3
”。
1966年,中国的陈景润证明了
“1
+
2
”。
最终会由谁攻克
“1
+
1
”这个难题呢?现在还没法预测。参考资料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14

㈦ 世界最难奥数题

你像这样去想来,既然自服务生每人退还了一元,说明这三个人总共花了27元,其中有25元在老板那,另外两元在服务生那。
3*9=27中其实已经包括了服务生的两元,27元使他们所花的,再加上服务员退还给他们的3元,就是30

㈧ 世界上最难的23到数学题是什么

哥德巴赫猜想(Goldbach Conjecture)

公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个n ³ 6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个n ³ 9之奇数,都可以表示成三个奇质数之和。

这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:

6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,

16 = 5 + 11, 18 = 5 + 13, . . . . 等等。

有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。

在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。

1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。

1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。

1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。

1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。

1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。

1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。

1956年,中国的王元证明了 “3 + 4 ”。

1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。

1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,

中国的王元证明了 “1 + 4 ”。

1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。

1966年,中国的陈景润证明了 “1 + 2 ”。

最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。

"X&P _,S|:Yt}[0 o o o o o 桌面天下WX g ps^b/M
o o o o 桌面天下1G6g i%H&@^{
o o o o o 桌面天下4sR&~!g S;hQ%@?L
o o o o o
yLOSh0o o o o o
]%RC bo'Fz d9n0桌面天下D#lw7P+XX ?4N
将每个圈用直线连起来,不能用斜线,不能空一个, 线不能交叉。桌面天下?6A3^S#Nn+I Y ?3r

(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b H0桌面天下,t|tz Y*Vvmb
桌面天下 uZS ]@ rI
桌面天下1O&D.x&R$i+Z

8U8ge2MH+t(i0显然右上角的点为起点(或终点),不妨以它为起点,我们对地盘进行染色:
6n"S!b E8K3wZ+]5M0o . o . * 桌面天下"Zh8C H`z
. o . o
*} V m]/y%y/z6TC0o . o . o
z0g*Y2@+l U0. o . o .
8gS;^&{?t&lk u0o . o . o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"为起点,"."是黑色,"o"是白色,显然,从*出发,每经过一个"."下一步必经过"o"(除了终点),而白色共12个,黑色11个,路线颜色必然是: 桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,显然矛盾,故不存在这样的路线

㈨ 世界上最难的数学题到底是什么

最简单:1+1=?
最难:被誉为“数学皇冠上的明珠”的哥德巴赫猜想,即任何一个大于4的偶数都可以写成两个奇素数的和,简写为1+1,可不是那些道听途说的人说的“一加一为什么等于二”的弱智问题。
哥德巴赫猜想至今无人证出,人们将它弱化为如下猜想,即任何一个大于4的偶数都可以写成m个奇素数的积与n个奇素数的积的和,人们的目标就是减小m与n值,直到m=n=1。目前最好的成绩是由我国数学家陈景润取得的,他证出了1+2。

㈩ 世界上最难的数学题是什么答案又是什么

据说是这个:
最难的数学题是证明题“哥德巴赫猜想”.
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.考虑把偶数表示为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b".1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和".离猜想成立即"1+1"仅一步之遥.

热点内容
安工大老师 发布:2025-07-11 02:47:26 浏览:525
微生物学第三版 发布:2025-07-11 00:14:22 浏览:107
初中数学卷子 发布:2025-07-11 00:11:28 浏览:807
2年级语文上册期中试卷 发布:2025-07-10 23:36:23 浏览:93
活性炭化学式 发布:2025-07-10 16:30:45 浏览:437
怎么双眼皮 发布:2025-07-10 14:11:37 浏览:591
教师师德演讲稿集锦 发布:2025-07-10 13:52:59 浏览:701
英语培训翻译 发布:2025-07-10 10:05:31 浏览:823
2014暑期实践 发布:2025-07-10 09:19:41 浏览:982
老师批改作业的图片 发布:2025-07-10 07:56:40 浏览:819