当前位置:首页 » 语数英语 » 数学六年级应用题

数学六年级应用题

发布时间: 2021-08-06 17:12:57

⑴ 小学六年级数学应用题

客车行1份到甲地,货车就行5/3份距离乙地90千米,
这90千米就是3-1-5/3=1/3份,每份是90÷1/3=270千米,
甲乙两地间的距离是270×3=810千米。

⑵ 六年级下册数学较难应用题 带答案

典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。 差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。 数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。 例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。 根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。 一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。” 两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。 解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一) 总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米? 分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。 解题规律:(和+差)÷2 = 大数 大数-差=小数 (和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人? 分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。 列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)„乙绳剩下的长度, 17 × 3=51 (米)„甲绳剩下的长度, 29-17=12 (米)„剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。 解题关键及规律:
同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。 同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。 船速:船在静水中航行的速度。 水速:水流动的速度。
顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。 顺速=船速+水速 逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间 路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米? 分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。 根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人)

三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1) 沿周长植树
棵树=总路程÷株距 株距=总路程÷棵树 总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

⑶ 6年级数学应用题

1.两列火车从甲.乙两地同时相对开出,4小时后在距中点48千米处相遇。已知慢车是快车速度的七分之五,快车和慢车的速度各是多少?甲乙两地相距多少千米?
2.一批零件,甲乙两人合作12天可以完成。他们合作若干天后,乙因事请假,乙这时只完成了总任务的十分之三。甲继续做,从开始到完成任务用了14天。请问:甲单独做了多少天?
3.修一段公路,原计划120人50天完工。工作一个月(按30天计算)后,有20人被调走,赶修其他路段。这样剩下的人需比原计划多干多少天才能完成任务?
1.设快车速度为x,则慢车速度为5/7x,得方程
(x-5/7x)×4=48×2
2/7x×4=96
2/7x=24
x=84
则慢车速度是5/7x=60千米
两地距离:(84+60)×4=576千米

2.设甲单独做了x天,则他们合作做了(14-x)天
甲14天完成了(1-3/10),因此可求出甲的工作效率是1/20
乙(14-x)天做了3/10,因此可知乙的工作效率是3/10÷(14-x)
他们的工作效率和是1/12
列方程:3/10÷(14-x)=1/12-1/20
最后结果是x=5
3.比原计划多干4天
把这个工程看作1,则工人的工作效率可看作是1/(120×50),
30天后完成了总工程的3/5,剩下2/5,那么剩下的100个工人的工作效率和是100/(120×50),所以
2/5÷(100/(120×50))=24天
24-20=4天

⑷ 六年级数学应用题带答案

(人教版)六年级数学上册 分数应用题(二)及答案(一) (1)一条水渠,第一天挖了 8 ,还剩175米没挖,第一天修了多少米? (2)洗衣机厂上半年生产洗机厂完成了全年计划的3 5 ,下半年生产的和上半年同样多,实际超额完成100台,计划生产洗衣机多少台? (3)李明看一本书,第一天看了全书的1 5 ,第二天看了39页,这时正好看了全书的一半,这本书共有多少页? (4)一辆汽车从甲地开往乙地,第一天行了全程的14 ,第二天行了全程的1 5 ,离乙地还有 112千米。甲、乙两地相距多远? (5)李看一本书,第一天看了全书的16 ,第二天看了全书的1 3 ,第三天看了12页,还剩 20页没看,这本书共有多少页? (6)建华水泥厂上半年完成全年计划的31 60 ,下半年生产了12.8万吨,实际全年产量超过计划的1 20 ,今年计划生产水泥多少吨? (7)挖一条水渠第一周挖了全长的15 ,第二周挖了全长的1 4 ,第二周比第一周多挖20米,这条水渠全长多少米? 参考答案 (1) 175÷(1-18 )×1 8 =175×87 ×1 8 =25(米) 答:第一天修了25米。 (2)解:设计划生产 x台。 答:计划生产500台洗衣机。 (3) = =130(页) 答:这本书共有130页。 (4) 解:设甲乙两地相距 千米。 答:甲乙两地相距320千米。 (5)

⑸ 小学六年级数学应用题!

学期光明小学六年级共有学生192人,这学期女生人数增加了15%,男生人数减少了6人,这学期全年级共有学生198人。上学期六年级有女生多少人?
设上学期六年级女生有x人,男生有y人
x+y=192
y=192-x
x+15%x+y-6=198
x+15%x+192-x-6=198
15%x=12
x=80
一辆客车从甲城开往乙城,途径一处收费站时,已行的路程与未行路程的比时5:7,又行了21千米,这是已行路程与未行路程的比是8:7.甲乙两城相距多少千米?
设全程为x千米
(5/12x+21):(7/12x-21)=8:7
8*(7/12x-21)=7*(5/12x+21)
56/12x-168=35/12x+147
21/12x=315
x=315×12÷21=180

⑹ 小学六年级数学应用题60道

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?
2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?
3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?
4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?
5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?
6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?
7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?
8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?
9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?
10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?
11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?
12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?
13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?
14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?
15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?
16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?
17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?
18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?
19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?
20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?
21、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?
22、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?
23、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?
24、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?
25、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?
26、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?
27、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?
28、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?
29、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?
30、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?
31、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?
32、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?
33、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?
34、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?
35、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?
36、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?
37、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?
38、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?
39、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?
40、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?
41、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?
42、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?
43、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?
44、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?
45、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?
46、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?
47、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?
48、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?
49、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?
50、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?
51、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?
52、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?
53、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?
54、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?
55、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?
56、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?
57、牧场养牛480头,比去年养的多1/5,比去年多多少头?
58、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?
59、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?
60.行同一段路,甲要20分钟,乙要18分钟,甲的速度比乙的速度慢百分之几?

⑺ 小学六年级数学应用题60道答案

小学六年级数学应用题+答案
1、儿童商店新来一批书包,上午售出了30%,下午售出了40个,这是正好还剩下一半,这批书包共有多少个?
40÷(50%-30%)
=40÷20%
=200个
2、某工厂有甲、乙两个车间,职工人数的比为3:5,如果从甲车间调120人到乙车间,则甲、乙两车间人数的比为3:7,甲、乙两车间原来各有多少人?
120÷( 7/10-5/8)
=120÷3/40
=1600人
甲:1600×3/8=600人
乙:1600×5/8=1000人
3、一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?
30÷1/2=60千米
1÷60=1/60小时
4、阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?
原来有x名同学
(1-4/7)x=(x-5)
x=28
5、红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?
62-24=38(只)
3/5红=2/3黄
9红=10黄 红:黄=10:9
38/(10+9)=2
红:2×10=20
黄:2×9=18
6、学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?
原有女生:36×4/9=16(人)
原有男生:36-16=20(人)
后有总人数:20÷(1-3/5)=50(人)
后有女生:50×3/5=30(人)
来女生人数:30-16=14(人)
7、水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?
2.16/(1+1/11)=1.98(立方米)
8、甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?
现在甲乙各有
560÷2=280吨
原来甲有280÷(1-2/9)=360吨
原来乙有560-360=200吨
9、电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?
原价是200÷2/11=2200元
现价是2200-200=2000元

⑻ 六年级数学应用题

1.一辆车,从A地到B地,车速比原速提高5分之一,可以提前一小时到达,如果先按原速行使120千米,然后车速提高4分之一,可以提前40分钟到达,问A到B的路程是多少千米?
2.汪师傅要生产120个零件,4.5小时生产27个。照这样的速度,完成任务要多少小时?
3.在比例尺3000000分之1的地图上,量的A,B两地的距离是4.5厘米。一辆汽车以每小时60千米的速度从A地开往B地,几小时可以到达?
4.某厂有职工1260人,女职工的1/8与男职工的2/5同样多,求男女职工各多少人?
小明读一本书,已读的和未读的页数比是1:5,如果再读30页,则已读的和未读的页书比是3:5,这本书有多少页?
5.小明和小亮住同一个楼,他们同时出发去郊外看老师,又同时到达,但途中小明休息的时间是小亮骑车时间的三分之一,而小亮休息的时间是小明骑车时间的四分之一,小明与小亮的速度比是多少?
6.一个圆柱形蓄水池,直径10米,深2米。这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?20、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?
7.压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。如果每分转动5周,每分可以压多大的路面?
8.大厅里有10根圆柱,圆柱底面直径1米,高8米。在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?
9.一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?
10.把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?
11.一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
12.把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?

热点内容
教师招聘考试答题技巧 发布:2025-07-09 11:50:06 浏览:586
高中数学教学案例范文 发布:2025-07-09 11:21:11 浏览:269
汪丽老师 发布:2025-07-09 11:20:21 浏览:982
贵阳哪个 发布:2025-07-09 10:48:16 浏览:993
高中历史框架 发布:2025-07-09 10:15:25 浏览:76
安全座椅哪个好 发布:2025-07-09 10:10:30 浏览:335
幻想老师漫画 发布:2025-07-09 07:13:31 浏览:900
六年级语文补充答案 发布:2025-07-09 06:19:21 浏览:21
保证书写给班主任100字 发布:2025-07-09 06:00:31 浏览:240
南科生物 发布:2025-07-09 04:15:57 浏览:993