当前位置:首页 » 语数英语 » 数学的建模

数学的建模

发布时间: 2021-08-07 02:04:03

数学建模方法和步骤

摘要
摘要在整篇论文评阅中占有重要权重,务必认真书写(篇幅不能超过一页)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。摘要写得不好,论点不明,条理不清,评委不再阅读正文,论文即遭被淘汰。
摘要是全文的精华,摘要应当点明:
(1)
模型的数学归类(数学上属于什么类型,如动态规划,微分方程稳定性等)
(2)
建模的思想(思路)
(3)
算法思想(求解思路)
(4)
模型特色(模型优缺点,算法特点,结果检验,灵敏度分析,模型检验等)
(5)
主要结果(数值结果,结论)(回答题目所问的全部“问题”)
注意表述一定要准确、简明、通顺、工整,务必认真校对。
1.
问题重述
把原问题简单重述一遍,但不是照搬,而是从数学的角度重新表述。
2.
模型假设
根据评卷原则,基本假设的合理性占重要比重。
应当根据题目中的条件和要求作出合理假设,假设要切合题意,关键性假设不能缺。
3.
模型的建立
(1)数学建模是用数学方法解决问题,首先要有数学模型:数学公式、方程、方案等;要求完整,正确,简明
(2)模型要实用,有效,以解决问题有效为原则,不追求数学上的高(级)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被多数人理解的方法,就不用只有少数人能理解的方法。
(3)鼓励创新,但要切合实际。数模创新可体现在模型中(好思想、好方法、好策略等);模型求解中(好算法、好步骤、好程序);结果表示中(醒目、图表、分析、检验等);模型推广中。
4.
模型求解
(1)
需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2)
需要说明算法的原理、依据、步骤。若用现有软件,要说明理由,软件名称。
(3)
计算过程,中间结果可要可不要的,不必列出。
(4)
设法算出合理的数值结果。
5.模型的结果
(1)
最终数值结果的正确性或合理性是第一位的;
(2)
对数值结果或模拟结果须进行必要的检验。结果不正确、不合理、或误差大时,分析原因,
对算法、计算方法、或模型进行修正、改进;
(3)
题目中要求回答的问题,数值结果,结论,必须一一列出;
(4)
考虑是否需要列出多组数据,对数据进行比较、分析,为各种方案的提出提供依据;
(5)
结果的表示要集中,醒目,直观,便于比较分析
(6)
必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
6.模型评价
(1)说明特色,优点突出,缺点不回避。
(2)改变原题要求,重新建模可在此做。
(3)推广或改进方向时,要合理、可行,不要玩弄新数学术语。
7.参考文献
按规定列出。
8.附录
(1)主要结果数据,应在正文中列出。
(2)数据、表格,可在此列出,但不要错,错的宁可不列。

❷ 数学建模数学要求

数学建模是使用数学模型解决实际问题。
对数学的要求其实不高。
我上大一的时候,连高等数学都没学就去参赛,就能得奖。
可见数学是必需的,但最重要的是文字表达能力
回答者:抉择415 - 童生 一级 3-13 14:48

数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。

数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。

数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等 基本的数学知识
同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等

一般大学进行数学建模式从大二下学期开始,一般在九月份开始竞赛,一般三天时间,三到四人一组,合作完成!!!

数模网 :http://www.shumo.com/main/

❸ 数学建模和数学模型有什么区别

1、原理不同

数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

2、研究方向不同

数学建模:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

数学模型:所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。

3、建立的基础不同

数学建模:是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性,逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性。

数学模型:建立模型要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

(3)数学的建模扩展阅读:

数学模型的要求

1、真实的、系统的、完整的,形象的反映客观现象;

2)必须具有代表性;

3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;

4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

参考资料来源:网络-数学建模

参考资料来源:网络-数学模型

❹ 怎样学习数学建模

数学建模知识应该具备的数学基础有高等数学、线性代数、概率论与数理统计,在此基础上重点看一下运筹学的书籍。当然,数学建模不仅仅是要求数学知识扎实,还需要参赛者广泛涉猎知识(包括物理、生物、心理学等),因为许多数学建模题目要求背景知识比较深,比如说12年MCM A题要求画出一棵树,这就需要参赛队员了解某类植物树叶生长具备的特点,涉及生物学知识;第二届MATHORCUP全球数学建模挑战赛A题也涉及到空气动力学知识。因此,数学建模是以数学为基础,综合各门学科(涵盖自然科学和社会科学)的一项赛事。

具备上述基础知识以后,就着重看一些建模方面的书籍,如:赵静和但琦的《数学建模与数学实验》、姜启源和谢金星的《数学模型》、《运筹学》、肖华勇的《实用数学建模与软件应用》。每一本书都有自己的特色,也没必要仔仔细细地把整本书都看完,甚至你可以只知道模型的大致步骤,真正用到的时候再翻书详细了解这个模型。因为数学建模本身就是一个学习的过程,在短短3天时间里,将陌生的知识转化成自己的知识是具有挑战的,更何况还要对模型进行改进,但是正是这样,我们才能不断接触新知识,不断培养自己的学习能力。

熟悉模型之后,基本能够看懂大部分的优秀论文了。个人认为看一些“高教杯”特等奖论文及美赛Outstanding对自己思路、知识、写作能力提升非常快,这些论文一般逻辑性很强,层次感出众。在欣赏优秀论文的过程中,还要注意模型的适用范围,举个例子来说,对于预测类的题目,比较常用的预测模型有时间序列模型、灰色预测模型、贝叶斯预测模型、神经网络预测模型等,这些模型并不是对所有的数据都是适的,有些模型需要先对数据进行剔除、平均等处理,这些细节需要特别注意,一旦不注意就会影响整篇论文的量。

上述三步进行之后,接下来就是实战演练了。参加完后主动找组委会要评语(因为那些评语里记录着你的不足,便于今后改正)。

❺ 对于数学,建模的意义是什么数学建模是怎样建立的又是怎样掌握数学的

题主的问抄题表述可能不太准确,应该说对于建模,数学的意义是什么?
数学本身不依赖于建模,也就是说建模对数学而言毫无意义可言。
但建模依赖于数学,这体现在建模的思想、求解等方面。譬如许多建模的问题是将实际问题中的若干变量转换为一个或多个线性规划、非线性规划问题去解释、求最优值,这就依赖于数学学科的“运筹学分支”。更不用提一些建模问题本身就具有统计学意义了。
数学建模的建立时间应该没有准确的定论,因为数学建模的本质就在于用合理化的数学模型去解决生活问题,依照这个定义而言,建模其实质就是数学的应用意义,而数学最早就是从实际化走向抽象化的,既然如此,又谈何建立本身呢?有数学的时候就已然有了数学建模。
第三个问题建模是如何掌握数学的,我个人认为是不严密的说法,应该说建模是掌握应用数学,而非掌握了理论数学。应用数学是为了解决实际问题而进行研究发展的,是数学建模中的数学知识这一部分,其发展是根据实际需要进行的。而纯粹的理论数学则不具备这种性质。

❻ 什么是数学建模大赛

简单地说:数模竞赛就是对实际问题的一种数学表述。

具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

数学结构可以是数学公式,算法、表格、图示等。数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。

该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

2018年,来自全国33个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。

(6)数学的建模扩展阅读:

竞赛宗旨

创新意识 团队精神 重在参与 公平竞争。

指导原则

指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。

相关意义

1、培养创新意识和创造能力

2、训练快速获取信息和资料的能力

3、锻炼快速了解和掌握新知识的技能

4、培养团队合作意识和团队合作精神

5、增强写作技能和排版技术

6、荣获国家级奖励有利于保送研究生

7、荣获国际级奖励有利于申请出国留学

8、更重要的是训练人的逻辑思维和开放性思考方式

❼ 数学建模是什么

数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

(7)数学的建模扩展阅读:

从基本物理定律以及系统的结构数据来推导出模型。

1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。

2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。

从大量的观测数据利用统计方法建立数学模型。

1. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3. 回归分析法--用于对函数f(x)的一组观测值(xi, fi)i=1,2…n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

❽ 数学建模是什么

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。
数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

全国大学生数学建模竞赛章程
(一九九七年十二月修订)
第一条 总则
全国大学生数学建模竞赛(以下简称竞赛)是国家教委高教司和中国工业与
应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励
学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际
问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养
创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
第二条 竞赛内容
竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,
不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题
目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一
篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析
和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建
模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛一般在每年9月末的三天内举行。
3.大学生以队为单位参赛,每队3人,专业不限。研究生不得参加。每队可设一名指
导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参
赛队员,不得进行指导或参与讨论,否则按违反纪律处理。
4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,
但不得与队外任何人(包括在网上)讨论。
5.
工作人员将密封的赛题按时启封发给参赛队员,参赛队在规定时间内完成答卷,
并准时交卷。
6 .参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛
的规范性和公正性。
第四条 组织形式
1.竞赛由全国竞赛组织委员会主持,负责每年发动报名、拟定赛题、组织全国优秀
答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。全国竞赛组委会每届
任期四年,其组成人员由国家教委高教司和中国工业与应用数学学会负责确定。
2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区
应至少有6所院校的20个队参加(每所院校至多10个队)。邻近的省可以合并成立
一个赛区。每个赛区建立组织委员会,负责本赛区的宣传发动及报名、监督竞赛纪
律和组织评阅答卷等工作。组委会成员由各省(自治区、直辖市)教委、工业与应
用数学学会的同志及有关人士组成(没有成立地方学会的,由各地教委与全国竞赛
组委会指定的院校协商确定),报全国竞赛组委会备案,并保持相对稳定。未成立
赛区的各省院校的参赛队可直接向全国竞赛组委会报名参赛。
3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,
以参赛(相对)校数和(绝对)队数、征题的数量和质量、无违纪现象、以及与
全国组委会的配合等为主要标准。
第五条 评奖办法
1.各赛区组委会聘请专家组成评阅委员会,评选本赛区的一等、二等奖(也可增设三等奖),
获奖比例一般不超过三分之一,其余凡完成合格答卷者获得成功参赛奖。
2.各赛区组委会按规定的比例将本赛区的优秀答卷送全国竞赛组委会。全国竞赛组委
会聘请专家组成全国评委会,按统一标准从各赛区送交的优秀答卷中评选出全国一等、
二等奖,获奖比例为全国参赛队数的百分之十左右。
3.全国与各赛区的一、二等奖均颁发获奖证书。竞赛成绩记入学生档案,对成绩优秀的参
赛学生,各院校在评优秀生、奖学金及报考(或免试直升)研究生时应予以适当考虑。
对指导教师的辛勤努力应予以表彰。
4.参赛队的指导教师一律不得参加本赛区及全国的评阅和决定获奖名次的工作。
5.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。对所在院校要予以
警告、通报,直至取消该校下一年度参赛资格。对违反评阅答卷和评奖工作规定的赛区,
全国竞赛组委会不承认其评奖结果。
6.设立异议期制度,具体内容见《全国大学生数学建模竞赛异议期制度的若干规定》。
第六条 经费
1.参赛队向各赛区组委会交纳报名费。
2.赛区组委会向全国组委会交纳一定数额的经费。
3.各级教育管理部门的资助。
4.社会各界的资助。

❾ 数学建模怎么入门

以下建议针对非数学系的新人,可以有计划的学习,不过别忘记,比赛是3个人的事情,所以下面涉及的知识仅靠一个人是不太可能胜任的(不排除有大牛人),这时候队友的分工协作就尤为重要了。
首先是我擅长的离散型的模型。如果你是计算机专业的,又有ACM经验的话,那么你可以大展身手了。不过对于非计算机专业的同学(比如当年的我)来说,应该是没有什么算法的经验了,所以恒心和毅力,对队友的信任,以及RP值(这点我超级自信)就非常重要了。
模型方面:姜启源的那本《数学模型》第三版,谢金星的《优化建模与LINDO/LINGO软件》就可以了,不用抱着一堆书结果什么都看不了。
算法的实现对于数学建模起着决定性的作用,一般要会以下算法。不过不用像计算机专业的那样,追求log
n或者n或者nlog
n的算法复杂度,只要能出结果就行,10min还是20min都可以。不过千万不要用LINGO求解TSP啊,要好多年才出结果。
1、
动态规划(工序调度,排课表,排比赛场次)
2、
0-1规划(投资,下料,运输)
3、
线性规划(投资,下料,运输)
4、
图的一系列问题(深度广度搜索,遍历,TSP,着色等等)
5、
网络流(多半转化成规划问题)
6、
最好能掌握神经网络,遗传,模拟退火,蚁群,禁忌搜索中的一种或多种,因为离散的赛题多半是组合优化的问题,大多数模型在现有算法能力下是没有精确解的(二维下料,排课表,TSP等等),所以启发式算法就显得尤为重要,比如遗传算法,MATLAB7.X已经有这个工具箱了,但是一定要弄清原理,知道怎么编码,怎么确定种群规模和遗传代数,怎么确定遗传概率和交叉概率。怎么避免早熟,怎么跳离局部最优。
软件方面:
1、
C/C++/JAVA/BASIC。随便会一种就可以,C的算法效率绝对比MATLAB高出很多,所以一般的算法还是用C实现吧。
2、
MATLAB。很无敌的数学软件,不多介绍了,最好能掌握神经网络工具箱和遗传算法工具箱的使用方法。算法的话,它可以实现的的C/C++也可以,用什么就看个人喜好了。
3、
LINGO。很无敌的规划模型的求解软件,对于离散模型来说,这个必须掌握。别忘记求解的时候在“全局最优”复选框前打钩,不然结果可能是局部最优。(LingoàOptionsàGlobal
Solverà
Use
Global
Solver)
然后是我不擅长的连续模型(可以说完全不懂,囧)。这个对编程能力的要求相对低一点,但是数学基本功要好,主要涉及的知识是数理统计和微分方程。
统计类问题:聚类,判别,单因素多因素方差分析,回归,拟合,还有那叫什么灰色预测的和时间序列分析的模型,听说很好用,但是我不会。
微分方程:不说什么了,这个我完全不懂,应该就是什么龙格库塔那类的,用MATLAB算参数的,其他的我也不说什么了,说得太多只能暴露我的无知。
以上就是我的一点点心得,希望可以对参加数学建模的同学有帮助,如果不仅仅是为了比赛获奖,当作一项爱好也是不错的选择。

❿ 数学建模的步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。
希望能解决您的问题。

热点内容
新开的英语 发布:2025-07-09 01:27:47 浏览:276
物理实验教师 发布:2025-07-09 00:46:01 浏览:21
怎么删除朋友圈 发布:2025-07-09 00:19:21 浏览:154
包钢股份历史 发布:2025-07-08 22:01:23 浏览:878
囚禁教师电影 发布:2025-07-08 20:48:26 浏览:962
化学键复习 发布:2025-07-08 20:42:29 浏览:831
北京教学视频 发布:2025-07-08 19:38:24 浏览:58
我印象最深的一个老师 发布:2025-07-08 19:00:24 浏览:284
七年级上册英语期末 发布:2025-07-08 18:59:48 浏览:141
阳西教育 发布:2025-07-08 18:31:56 浏览:479