当前位置:首页 » 语数英语 » 毕业论文数学

毕业论文数学

发布时间: 2021-08-07 15:54:14

1. 毕业论文数学

五二七粑粑巴三拔溜

2. 数学专业毕业论文

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。
数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

3. 数学毕业论文

列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。

抽象代数中的若干问题[数学专业论文]
http://www.maomaoxue.com/soft/sort09/Information-3390.html

复变函数积分方法探究[数学专业论文]
http://www.maomaoxue.com/soft/sort09/Information-3387.html

高阶微分方程解的分布问题[数学专业论文]
http://www.maomaoxue.com/soft/sort09/Information-3386.html

几类函数的留数定理[数学与应用数学]
http://www.maomaoxue.com/soft/sort09/Information-3380.html

与复积分有关的几个定理[数学与应用数学]
http://www.maomaoxue.com/soft/sort09/Information-3374.html

证明等边三角形的几种复数方法[数学与应用数学]
http://www.maomaoxue.com/soft/sort09/Information-3372.html

浅谈新课标下小学数学应用题的改革
http://www.maomaoxue.com/soft/sort01/Information-3065.html

对了,要查更多的内容的话,在网站关键字输入“数学”就可以
如果对你有帮助,请加分哦。

4. 毕业论文 数学

数学论文怎么
解到数学题吧

5. 大学数学毕业论文

代数学的研究,目前存在着一些彼此对立的研究结论;正确地分析存在着的矛盾结论,无疑会有助于人们深入地了解中国古代数学,同时也会使人们对数学史研究的方法和评价标准有新的认识。
一、几个有代表性的矛盾结论
如何评价中国古代数学,如何评价在中国古代文明中数学的作用以及它取得的成就是每个数学史学者关心的问题。但是目前的一些研究却有着一些矛盾的结论,这些矛盾的结论往往是围绕着认识、理解、评价中国古代数学的关键性理论问题展开的。
1.关于古代数学运用的思维方式问题
中国古代数学是否象古希腊那样明确地运用逻辑思维问题,目前已成为评价中国古代数学的一个重要因素,因为在人们的认识和理解中,数学如果没有严格的逻辑思维形式,那就很难成为真正的数学理论,袁晓明先生的研究结论与人们的良好愿望相反,他认为中国古代数学不存在象古希腊数学那样以逻辑为基础的思维方式,“与古希腊数学严格地采用逻辑演绎的逻辑思维方式不同,中国数学则是以非逻辑思维为主,即主要通过直觉、想象、类比、灵感等思维形式来形成概念、发现方法、实现推理的。”[1]
郭书春先生通过对《九章算术》的研究,得出相反的结论,他认为《九章算术》的注释中已经具有并形成了演绎的逻辑方法及演绎的逻辑体系,“刘徽注中主要使用了演绎推理,他的论证主要是演绎论证即真正的数学证明,从而把《九章算术》上百个一般公式、解法变成了建立在必然性基础之上的真正的数学科学。”[2]
巫寿康先生与郭书春先生的观点相同,他认为:“刘徽《九章算术注》中的每一个题,都可以分解成一些首尾相接的判断,如果仔细分析这些判断之间的联系,就会发现这些判断组成若干个推理,然后由这些推理再组成一个证明,因此可以说,《九章算术注》中的论证已经具备了证明的结构,就大多数注文来说,这其中的推理都是演绎推理,大多数证明也都是演绎证明。”[3]
中国古代数学到底“是以非逻辑思维为主”,还是“主要是演绎证明”,这是中国古代数学研究中一个矛盾的结论,还没有得到统一认识的问题。
2.关于中国古代数学理论构造的问题
按照西方数学的模式,一种数学著作若是按应用问题的类别编排,并且每一个题之后给出解法和答案,那么这个数学著作就是一个习题集的模式,也许正是由于这种客观原因,许多国外的学者都认为中国古代数学不存在什么理论构造,李约瑟先生就认为“从实践到纯知识领域的飞跃中,中国数学是未曾参与过的。”[4] 著名的数学家陈省身先生也有相同的看法,他认为“在中国几何中,我无法找到类似三角形内角和等于180°的推论,这是中国数学中没有的结果。因此, 得于国外数学的经验和有机会看中国数学的书,我觉得中国数学都偏应用,讲得过分一点,甚至可以说中国数学没有纯粹数学,都是应用数学。”[5]
中国的一些数学史学者对此持完全相反的观点,坚持强调中国古代数学理论构造的存在性。李继闵先生认为“中国传统数学具有自己独特的理论体系,它以理论的高度概括、精炼为特征,中算家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,而从非常简单的基本原理出发解决重大的理论关键问题……中国传统数学理论,乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单、精巧的理论建筑物。”[6]
中国古代数学是否有一个理论意义上的构造体系,这大概是目前中外数学史专家们对中国古代数学研究中的一个最大的分歧点。如何正确地评价中国古代数学的体系构造已成为中国数学史研究中应当回答的理论问题之一。
3.关于珠算在中国数学史中的地位问题。
在中国数学史的研究中,人们一直认为宋元数学是中国古代数学的高峰。宋元之后的明代珠算无法与宋元数学的成就相比,明代珠算一般被认为是“民用”或“商用”数学。言外之意,珠算是不能登中国古代数学理论构造的大雅之堂。许多学者认为宋元数学的衰退、被人遗忘是很值得研究的理论问题,而明代珠算却没有什么值得在理论层面给予研究的意义。
笔者的观点与当前评价宋元数学和明代珠算的观点都相悖。笔者认为珠算是中国古代数学在宋元之后取得的又一里程碑式的成就,它是中国筹算在运演工具上的重大创新,是筹算运演发展的重大突破,是中国古代数学技艺型发展的必然结果。[7]
如何评价珠算在中国数学史中的地位,实际也带来了如何评价宋元数学的一系列问题,在这个问题上笔者也提出了与目前传统观点相悖的论点,即宋元数学的成就,是中国筹算在特定的社会动荡、传统儒家观念发生紊乱、仕大夫仕途无望的文化氛围中奇异性发展的结果,当社会是进入稳定发展、仕大夫按照儒家传统观念走向仕途时,宋元数学就必然会被整个民族文化所淡忘。[8]
对珠算与宋元数学的评价,实际上涉及了如何看待中国古代筹算体系的发展及其内在规律的问题,这一问题也是正确认识中国古代数学的一个理论性的问题。
二、数学史研究的方法论问题及评判的理论依据
从方法论的意义上来考察中国古代的数学史研究,可以发现实际上存在两个不同层次的研究状况,第一层次的研究是指对史料的收集、整理、考证。应当说这个层次的主要工作是在中国古代数学的范畴内对数学史实的发展及其流变进行分析认证。这一层次的分析考证应当确认史料的年代及其真伪,以及史实在中国数学发展中所处的地位。第二层次的研究,是对已确认的史料与世界数学史的比较评价。应当说这个层次的比较研究是在世界数学史的范畴内(实际上主要是中西数学发展的范畴内)进行比较研究,这一层次的主要工作是要确认中国古代数学已达到的理论层次。这一过程显然是把中国古代数学纳入到已有的理论框架中进行比较,进而要求表述中国古代数学在现有古代数学史理论框架内所处的地位、理论层次、构造性状况以及它对现有数学史理论的贡献。
在方法论意义上,这两个不同层次的工作不能混同,因为这两个层次的工作存在着研究的范畴差异、时间差异和评判依据准则的差异。[9]
所谓范畴差异,是指第一层次的研究是在中国文化的范畴内进行分析考证,而第二层次的研究主要是在中西文化的范畴内进行比较评断。第一层次研究此时要解决的是史料真伪状况及在中国文化中的发展状况,而第二层次的研究要回答的是,已经证实的中国史实材料与西方数学相比,与现代的数学理论相比,其结果如何。
所谓时间差异是指第一层次的研究是要把史料放在原有的历史时间内考证史料是什么,它的语言、背景、含意等等,第一层次运用的是历史时间序列。第二层次的比较研究是要把史料放在现代数学史的理论框架内来比较评判中国古代数学的史料达到的理论状态、在人类数学史中的地位等等。因此说,第二层次研究运用的是现代的时间序列。
所谓评判差异,是指第一层次的分析考证运用的是在历史演化发展时数学自身变化发展的评判尺度,即以中国古代数学的自身成就来评判某一特定历史阶段数学史实的意义。此时运用的是中国古代数学史的评判准则。例如,判定某个历史时期筹算的成就,运用的是筹算自身发展的规律来判定那个时期筹算达到的运演和理论的实际状况。当然,第二层次上的比较评判,运用的却是现代数学史研究的理论框架并以此分析评判中国古代数学某个史实所达到的标准。
值得指出的是,我们目前的一些比较评价,实际上都是在第二层次上进行的,但是作为第二层次研究所特有的方法论意义上的要求,却常常不被严格遵守,尤其是第二层次的比较评判中应当特别强调的理论评价准则在先的原则,往往不被重视。也就是说,如果我们要把某一个中国古代数学的史实与世界数学的理论形式相比较,就必须明确地认识到或论证出现有的数学成果构成的理论标准,并以此标准来判断中国古代数学的史料是否达到了这个理论标准。
中国一些数学史学者在进行中国古代数学的比较评判时,往往把第一层次的工作与第二层次的工作混同起来,尤其是在没有指出应有的评价准则时就把自己的感悟、个人的理解换成一种客观的标准,进而就得出一种评判的结果。这样的结论不仅会带来研究结果的矛盾,更为重要的是会使我们的研究成果具有很大的主观性、随意性特征。例如,台湾的学者李国伟先生就曾对国内学者认为刘徽“求微数法”就是无理数的研究成果提出疑义,并且从五个层次论述了刘徽的结果与无理数理论的差异。[10]显然,对于无理数问题的评判,国内一些学者缺乏理论标准在先的意识。
在自然科学史研究中,人们就是在正确地使用方法论的同时,也还有一个对史实论证过程中的潜在的理论模式影响的问题。这个问题实际已经超越了方法论意义的讨论,它实质上涉及了用什么样的古代数学理论模式来评判筹算所具有的理论价值。例如,对于中国筹算发展为珠算的评判以及对宋元数学和明代珠算的评价,虽然在数学史的研究中属于第一个层次的问题,但是它实际上已经涉及了用一种什么样的古代数学的模式来评判筹算取得的一些成果。
现在可以看出,中国古代数学史研究中出现的某些相互矛盾的结论,不仅仅是一个方法论方面的问题,它实际上涉及到用什么样的理论标准来评价筹算的发展、演变以及不同时期取得的成就。更进一步的问题可以成为,中国古代筹算是应当按照西方古代数学的模式来评价,还是放弃西方古代数学的模式重新建立一个中国文化中数学发展的模式,可以说这后一个问题是中国数学史面临的一个很值得讨论研究的理论问题。

三、筹算的特征及分析
从目前数学史研究中可以发现,人们对筹算构成的一些理论性问题很感兴趣,评价颇高,而对实际应用的发展评价颇低,似乎不被看作是中国古代数学的什么重大成果。同样的,人们对《九章算术》中表现的逻辑形式十分看重,而对它表现的筹算操作运演本身评价一般(如对代表正、负意义算筹形式及其排摆方法)。其实中西古代数学明显地存在巨大差异,这些差异正是我们客观认识中国古代数学发展模式和理论框架的必要基础。
吴文俊先生认为,中国古代数学是紧紧依靠算器而形成的一种数学模式

6. 毕业论文,数学

一元三次方程的解法可以吗?
一元三次方程求根公式的解法

-------摘自高中数学网站

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

x^y就是x的y次方
好复杂的说

塔塔利亚发现的一元三次方程的解法

一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消
去。所以我们只要考虑形如
x3=px+q
的三次方程。

假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,
3ab+p=0。这样上式就成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p3 = 27qa3
这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。

费拉里发现的一元四次方程的解法

和三次方程中的做法一样,可以用一个坐标平移来消去四次方程
一般形式中的三次项。所以只要考虑下面形式的一元四次方程:
x4=px2+qx+r
关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数
a,我们有
(x2+a)2 = (p+2a)x2+qx+r+a2
等式右边是完全平方式当且仅当它的判别式为0,即
q2 = 4(p+2a)(r+a2)
这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以
解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x
的一元二次方程,于是就可以解出原方程的根x。

最后,对于5次及以上的一元高次方程没有通用的代数解法(即通过各项系数经过有限次四则运算和乘方和开方运算),这称为阿贝耳定理

http://www.xycq.net/forum/archiver/?tid-85077.html
http://www.hbe.com.cn/2006-2-7/20062781401.htm
http://www.wlck.com/bbs/printpage.asp?BoardID=32&ID=6599
这3个网站都是一元四次方程的解法!

热点内容
大老师恶心 发布:2025-07-08 08:52:35 浏览:959
日本历史学 发布:2025-07-08 08:37:05 浏览:487
有什么好歌 发布:2025-07-08 07:06:26 浏览:686
小学语文阅读教学计划 发布:2025-07-08 07:06:19 浏览:841
数学老师推荐信 发布:2025-07-08 04:44:51 浏览:167
mc另类压声教学 发布:2025-07-08 04:35:41 浏览:891
古代地理学巨著 发布:2025-07-08 04:35:00 浏览:600
松鼠公开课教学设计 发布:2025-07-08 04:08:22 浏览:946
中国房价历史 发布:2025-07-05 16:22:07 浏览:309
2年级的英语 发布:2025-07-05 13:33:31 浏览:773